Negative Compressibility in Hexagonal and Trigonal Models Constructed by Hinging Wine-Rack Mechanism
Meng Ma
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022 P. R. China
Search for more papers by this authorXiaoqin Zhou
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022 P. R. China
Search for more papers by this authorCorresponding Author
Qiang Liu
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022 P. R. China
Search for more papers by this authorRongqi Wang
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022 P. R. China
Search for more papers by this authorZiyu Song
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022 P. R. China
Search for more papers by this authorMeng Ma
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022 P. R. China
Search for more papers by this authorXiaoqin Zhou
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022 P. R. China
Search for more papers by this authorCorresponding Author
Qiang Liu
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022 P. R. China
Search for more papers by this authorRongqi Wang
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022 P. R. China
Search for more papers by this authorZiyu Song
Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022 P. R. China
Search for more papers by this authorAbstract
In our previous work, a monoclinic octahedron model based on the tetragonal octahedron model for the negative compressibility property was analyzed. To design a larger number of new models with greater negative compressibility property, an extensive study to propose the hexagonal and trigonal models constructed by a hinging wine-rack mechanism is now conducted, according to the concept of the crystal system and the method to design new models by changing the system of models. The compressibility properties through theoretical modeling are analyzed, and the results show that the two models exhibit negative compressibility. Further analysis indicates that the two models have strong similarity with the tetragonal model, which can be analyzed uniformly, and the trigonal model has the greatest negative compressibility property among the three models, irrespective of the on-axis or off-axis compressibility property. Finally, owing to the particularity of the space configuration for the hexagonal and trigonal models, a series of new models with different spatial arrangements are proposed, which can greatly increase the number of models with negative compressibility.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1X. Yu, J. Zhou, H. Liang, Z. Jiang, L. Wu, Prog. Mater. Sci. 2018, 94, 114.
- 2S. Cummer, J. Christensen, A. Alù, Nat. Rev. Mater. 2016, 1, 16001.
- 3F. Zangeneh-Nejad, R. Fleury, Rev. Phys. 2019, 4, 100031.
10.1016/j.revip.2019.100031 Google Scholar
- 4Y. Tang, S. Ren, H. Meng, F. Xin, L. Huang, T. Chen, C. Zhang, T. Lu, Sci. Rep. 2017, 7, 43340.
- 5H. Al-Rifaie, W. Sumelka, Materials 2019, 12, 2573.
- 6G. Imbalzano, S. Linforth, T. D. Ngo, P. V. S. Lee, P. Tran, Compos. Struct. 2018, 183, 242.
- 7K. K. Dudek, W. Wolak, R. Gatt, J. N. Grima, Sci. Rep. 2019, 9, 3963.
- 8H. M. Kolken, S. Janbaz, S. M. Leeflang, K. Lietaert, H. H. Weinans, A. Zadpoor, Mater. Horizons 2018, 5, 28.
- 9D. T. R. Pasala, A. A. Sarlis, S. Nagarajaiah, A. M. Reinhorn, M. C. Constantinou, D. Taylor, J. Struct. Eng. 2013, 139, 1112.
- 10Y. Wang, L. Wang, Z. D. Ma, T. Wang, Mater. Des. 2016, 103, 90.
- 11Y. L. Chen, X. T. Wang, L. Ma, Polym. Test. 2020, 81, 106189.
- 12K. Bertoldi, P. M. Reis, S. Willshaw, T. Mullin, Adv. Mater. 2010, 22, 361.
- 13X. T. Wang, B. Wang, Z. H. Wen, L. Ma, Compos. Sci. Technol. 2018, 164, 92.
- 14Y. Xue, P. Gao, L. Zhou, F. Han, Materials 2020, 13, 1008.
- 15L. Mizzi, E. Salvati, A. Spaggiari, J. C. Tan, A. M. Korsunsky, Int. J. Mech. Sci. 2020, 167, 105242.
- 16P. R. L. Welche, V. Heine, M. T. Dove, Phys. Chem. Miner. 1998, 26, 63.
- 17J. S. O. Evans, T. A. Mary, A. W. Sleight, J. Solid State Chem. 1998, 137, 148.
- 18A. L. Goodwin, M. Calleja, M. J. Conterio, M. T. Dove, J. S. Evans, D. A. Keen, L. Peter, M. G. Tucker, Science 2008, 319, 794.
- 19C. B. Churchill, D. W. Shahan, S. P. Smith, A. C. Keefe, G. P. McKnight, Sci. Adv. 2016, 2, e1500778.
- 20K. K. Dudek, R. Gatt, J. N. Grima, Mater. Des. 2020, 187, 108403.
- 21R. H. Baughman, S. Stafström, C. Cui, S. O. Dantas, Science 1998, 279, 1522.
- 22A. D. Fortes, E. Suard, K. S. Knight, Science 2011, 331, 742.
- 23W. Cai, J. He, W. Li, A. Katrusiak, J. Mater. Chem. C 2014, 2, 6471.
- 24W. Li, M. R. Probert, M. Kosa, T. D. Bennett, A. Thirumurugan, R. P. Burwood, M. Parinello, J. A. K. Howard, A. K. Cheetham, J. Am. Chem. Soc. 2012, 134, 11940.
- 25W. Cai, A. Katrusiak, Nat. Commun. 2014, 5, 4337.
- 26A. L. Goodwin, D. A. Keen, M. G. Tucker, Proc. Natl. Acad. Sci. USA 2008, 105, 18708.
- 27H. Wang, M. Feng, Y. F. Wang, Z. Y. Gu, Sci. Rep. 2016, 6, 26015.
- 28J. N. Grima, E. Degabriele, D. Attard, Phys. Status Solidi B 2016, 253, 1419.
- 29L. Kang, X. Jiang, S. Luo, P. Gong, W. Li, X. Wu, Y. Li, X. Li, C. Chen, Z. Lin, Sci. Rep. 2015, 5, 13432.
- 30E. Magos-Palasyuk, K. J. Fijalkowski, T. Palasyuk, Sci. Rep. 2016, 6, 28745.
- 31S. G. Duyker, V. K. Peterson, G. J. Kearley, A. J. Studer, C. J. Kepert, Nat. Chem. 2016, 8, 270.
- 32J. P. Formosa, R. Cauchi, J. N. Grima, Phys. Status Solidi B 2015, 252, 1656.
- 33W. Cai, A. Gładysiak, M. Anioła, V. J. Smith, L. J. Barbour, A. Katrusiak, J. Am. Chem. Soc. 2015, 137, 9296.
- 34F. Colmenero, Mater. Lett. 2019, 245, 25.
- 35S. A. Hodgson, J. Adamson, S. J. Hunt, M. J. Cliffe, A. B. Cairns, A. L. Thompson, M. G. Tucker, N. P. Funnell, A. L. Goodwin, Chem. Commun. 2014, 50, 5264.
- 36X. Jiang, S. Luo, L. Kang, P. Gong, W. Yao, H. Huang, W. Li, R. Huang, W. Wang, Y. Li, X. Li, X. Wu, P. Lu, L. Li, C. Chen, Z. Lin, Adv. Mater. 2015, 27, 4851.
- 37I. Loa, K. Syassen, R. K. Kremer, Solid State Commun. 1999, 112, 681.
- 38G. Feng, W. X. Zhang, L. Dong, W. Li, W. Cai, W. Wei, L. Ji, Z. Lin, P. Lu, Chem. Sci. 2019, 10, 1309.
- 39J. N. Grima, D. Attard, R. Caruana-Gauci, R. Gatt, Scr. Mater. 2011, 65, 565.
- 40R. Gatt, J. N. Grima, Phys. Status Solidi RRL 2008, 2, 236.
- 41J. N. Grima, D. Attard, R. Gatt, Phys. Status Solidi B 2008, 245, 2405.
- 42J. N. Grima, R. Caruana-Gauci, K. W. Wojciechowski, K. E. Evans, Smart Mater. Struct. 2013, 22, 084015.
- 43D. L. Barnes, W. Miller, K. E. Evans, A. Marmier, Mech. Mater. 2012, 46, 123.
- 44K. K. Dudek, D. Attard, R. Caruana-Gauci, K. W. Wojciechowski, J. N. Grima, Smart Mater. Struct. 2016, 25, 025009.
- 45D. Attard, R. Caruana-Gauci, R. Gatt, J. N. Grima, Phys. Status Solidi B 2016, 253, 1410.
- 46X. Q. Zhou, L. Zhang, L. Yang, Chin. Phys. B 2017, 26, 126201.
- 47J. N. Grima-Cornish, J. N. Grima, D. A. Attard, Materials 2020, 13, 79.
- 48W. Miller, K. E. Evans, A. Marmier, Appl. Phys. Lett. 2015, 106, 231903.
- 49T. C. Lim, Phys. Status Solidi B 2017, 254, 1600682.
10.1002/pssb.201600682 Google Scholar
- 50J. N. Grima, R. Caruana-Gauci, D. Attard, R. Gatt, Proc. R. Soc. A 2012, 468, 3121.
- 51X. Zhou, L. Zhang, H. Zhang, Q. Liu, T. Ren, Phys. Status Solidi B 2016, 253, 1977.
- 52X. Zhou, L. Yang, M. Ma, L. Zhang, Phys. Status Solidi B 2019, 256, 1800297.
10.1002/pssb.201800297 Google Scholar
- 53M. Ma, J. Li, L. Yang, X. Zhou, Phys. Status Solidi B 2020, 257, 1900657.
- 54A. Ghaedizadeh, J. Shen, X. Ren, Y. M. Xie, Mater. Des. 2017, 131, 343.
- 55K. K. Dudek, D. Attard, R. Gatt, J. N. Grima-Cornish, J. N. Grima, Materials 2020, 13, 2193.
- 56M. Ma, X. Zhou, H. Liu, H. Wang, Phys. Status Solidi B 2021, 258, 2000389.
- 57J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, UK 1985, pp. 144–145.