Energetic Stability of Vacancy-Carbon Clusters in Solid Solution Alloys: The Fe-Cr-C Case
Corresponding Author
Giovanni Bonny
SCK·CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol, Belgium
Search for more papers by this authorAlexander Bakaev
SCK·CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol, Belgium
Search for more papers by this authorDmitry Terentyev
SCK·CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol, Belgium
Search for more papers by this authorCorresponding Author
Giovanni Bonny
SCK·CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol, Belgium
Search for more papers by this authorAlexander Bakaev
SCK·CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol, Belgium
Search for more papers by this authorDmitry Terentyev
SCK·CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol, Belgium
Search for more papers by this authorAbstract
In carbon-containing alloys, the energetic stability of vacancy-carbon (v-C) clusters plays a key role in the post-irradiation damage recovery. So far, all interpretations of post-irradiation annealing experiments are based on the theoretical knowledge established for the iron-carbon alloy. For the interpretation of high-Cr steels, the stability of v-C clusters in the presence of a solid solution background is essential. Therefore, a simple and efficient model to estimate the stability of v-C clusters in random solid solution alloys is proposed. The model is parameterized for the Fe-Cr-C alloy using density functional theory. The results are discussed accounting for available experimental evidences.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 A. Kohyama, A. Hishinuma, D. S. Gelles, R. L. Klueh, W. Dietz, K. Ehrlich, J. Nucl. Mater. 1996, 233–237, 138.
- 2 R. L. Klueh, A. T. Nelson, J. Nucl. Mater. 2007, 371, 37.
- 3 O. Anderoglu, T. S. Byun, M. Toloczko, S. A. Maloy, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci. 2013, 44, S70.
- 4
E. O. Hall,
Yield Point Phenomena in Metals and Alloys, 1st ed.,
Plenum Press,
New York
1970.
10.1007/978-1-4684-1860-6 Google Scholar
- 5 D. Terentyev, I. Martin-Bragado, Scr. Mater. 2015, 97, 5.
- 6 D. Terentyev, N. Anento, A. Serra, J. Nucl. Mater. 2012, 420, 9.
- 7 D. Terentyev, N. Anento, A. Serra, V. Jansson, H. Khater, G. Bonny, J. Nucl. Mater. 2011, 408, 272.
- 8 A. Vehanen, P. Hautojärvi, J. Johansson, J. Yli-Kauppila, P. Moser, Phys. Rev. B 1982, 25, 762.
- 9 S. Takaki, J. Fuss, H. Kugler, U. Dedek, H. Schultz, Radiat. Eff. 1983, 79, 87.
- 10 C. C. Fu, J. D. Torre, F. Willaime, J. L. Bocquet, A. Barbu, Nat. Mater. 2005, 4, 68.
- 11 D. Terentyev, G. Bonny, A. Bakaev, D. Van Neck, J. Phys.: Condens. Matter 2012, 24, 385401.
- 12 D. Terentyev, K. Heinola, A. Bakaev, E. E. Zhurkin, Scr. Mater. 2014, 86, 9.
- 13 A. L. Nikolaev, V. L. Arbuzov, A. E. Davletshin, J. Phys.: Condens. Matter 1997, 9, 4385.
- 14 A. L. Nikolaev, J. Phys.: Condens. Matter 1999, 11, 8633.
- 15 A. L. Nikolaev, Philos. Mag. 2007, 87, 4847.
- 16 G. Apostolopoulos, V. Lukianova, Z. Kotsina, A. Lagoyannis, K. Mergia, S. Harissopoulos, S. Messoloras, Nucl. Mater. Energy 2016, 9, 465.
- 17 A. L. Nikolaev, Philos. Mag. 2011, 91, 879.
- 18 G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
- 19 G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
- 20 P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 21 G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 22 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
- 23 M. Methfessel, A. T. Paxton, Phys. Rev. B 1989, 40, 3616.
- 24 H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 25 C. Domain, C. S. Becquart, J. Foct, Phys. Rev. B 2004, 69, 144112.
- 26 C. S. Becquart, J. M. Raulot, G. Bencteux, C. Domain, M. Perez, S. Garruchet, H. Nguyen, Comput. Mater. Sci. 2007, 40, 119.
- 27 D. J. Hepburn, G. J. Ackland, Phys. Rev. B 2008, 78, 165115.
- 28 C. Barouh, T. Schuler, C. C. Fu, M. Nastar, Phys. Rev. B 2014, 90, 054112.
- 29 P. Olsson, C. Domain, J. Wallenius, Phys. Rev. B 2007, 75, 014110.
- 30 P. Olsson, T. P. C. Klaver, C. Domain, Phys. Rev. B 2010, 81, 054102.
- 31 M. J. Konstantinović, G. Bonny, Acta Mater. 2015, 85, 107.
- 32 S. Choudhury, L. Barnard, J. D. Tucker, T. R. Allen, B. D. Wirth, M. Asta, D. Morgan, J. Nucl. Mater. 2011, 411, 1.
- 33 C. Domain, C. S. Becquart, Phys. Rev. B 2001, 65, 024103.
- 34 F. Soisson, C.-C. Fu, Phys. Rev. B 2007, 76, 214102.
- 35 L. Messina, M. Nastar, T. Garnier, C. Domain, P. Olsson, Phys. Rev. B 2014, 90, 104203.
- 36 G. Bonny, D. Terentyev, L. Malerba, Scr. Mater. 2008, 59, 1193.
- 37 G. Bonny, D. Terentyev, L. Malerba, J. Phase Equilibria Diffus. 2010, 31, 439.
- 38 C. Domain, C. S. Becquart, L. Malerba, J. Nucl. Mater. 2004, 335, 121.
- 39 C. J. Ortiz, M. J. Caturla, Phys. Rev. B 2007, 75, 184101.
- 40 N. Castin, A. Bakaev, G. Bonny, A. E. Sand, L. Malerba, D. Terentyev, J. Nucl. Mater. 2017, 493, 280.
- 41 I. Mirebeau, M. Hennion, G. Parette, Phys. Rev. Lett. 1984, 53, 687.
- 42 N. P. Filippova, V. A. Shabashov, A. L. Nikolaev, Phys. Met. Metallogr. 2000, 90, 145.
- 43 G. Bonny, P. Erhart, A. Caro, R. C. Pasianot, L. Malerba, M. Caro, Model. Simul. Mater. Sci. Eng. 2009, 17, 025006.
- 44 M. J. Konstantinović, L. Malerba, Phys. Rev. Mater. 2017, 1, 053602.
- 45 A. Bakaev, D. Terentyev, E. E. Zhurkin, D. Van Neck, Nucl. Instrum. Methods Phys. Res. B 2015, 352, 47.
- 46 A. Bakaev, D. Terentyev, G. Bonny, T. P. C. Klaver, P. Olsson, D. Van Neck, J. Nucl. Mater. 2014, 444, 237.
- 47 A. Bakaev, D. Terentyev, X. He, E. E. Zhurkin, D. Van Neck, J. Nucl. Mater. 2014, 451, 82.