Spin Transport in Armchair Silicene Nanoribbon on the Substrate: The Role of Charged Impurity
Corresponding Author
Shoeib Babaee Touski
Department of Electrical Engineering, Hamedan University of Technology, Hamedan 65155, Iran
Search for more papers by this authorCorresponding Author
Shoeib Babaee Touski
Department of Electrical Engineering, Hamedan University of Technology, Hamedan 65155, Iran
Search for more papers by this authorAbstract
In this work, electrical and spin properties of armchair silicene nanoribbon (ASiNR) in the presence of charged impurity are studied. The non-equilibrium Green's function along with multi-orbital tight-binding is applied to obtain the transmission probability. Different types of spin transmission probability in the ASiNR on a substrate are investigated. The charged impurities are located in the underlying substrate. Spin-flip along the channel is calculated by using the spin transmission probability. The spin diffusion length in ASiNR for differently charged impurities is obtained and compared with the mean free path.
Conflict of Interest
The author declares no conflict of interest.
References
- 1 A. Kara, H. Enriquez, A. P. Seitsonen, L. L. Y. Voon, S. Vizzini, B. Aufray, H. Oughaddou, Surf. Sci. Rep. 2012, 67, 1.
- 2 M. Houssa, A. Dimoulas, A. Molle, J. Phys.: Condens. Matter 2015, 27, 253002.
- 3 L. Lew Yan Voon, J. Zhu, U. Schwingenschlögl, Appl. Phys. Lett. 2016, 3, 040802.
- 4 M. Ezawa, Phys. Rev. Lett. 2012, 109, 055502.
- 5 C. C. Liu, W. Feng, Y. Yao, Phys. Rev. Lett. 2011, 107, 076802.
- 6 C. C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 2011, 84, 195430.
- 7 W. F. Tsai, C. Y. Huang, T. R. Chang, H. Lin, H. T. Jeng, A. Bansil, Nature Commun. 2013, 4, 1500.
- 8 Y. Ding, Y. Wang, Appl. Phys. Lett. 2013, 102, 143115.
- 9 X. Yang, Y. Liu, J. Feng, X. Wang, C. Zhang, F. Chi, J. Appl. Phys. 2014, 116, 124312.
- 10 D. Zhang, M. Long, X. Zhang, C. Cao, H. Xu, M. Li, K. Chan, Chem. Phys. Lett. 2014, 616, 178.
- 11 X. Deng, Z. Zhang, G. Tang, Z. Fan, H. Zhu, C. Yang, Sci. Rep. 2014, 4, 4038.
- 12 C. Xu, G. Luo, Q. Liu, J. Zheng, Z. Zhang, S. Nagase, Z. Gao, J. Lu, Nanoscale 2012, 4, 3111.
- 13 J. Kang, F. Wu, J. Li, Appl. Phys. Lett. 2012, 100, 233122.
- 14 P. Zhang, X. Li, C. Hu, S. Wu, Z. Zhu, Phys. Lett. A 2012, 376, 1230.
- 15 B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Leandri, B. Ealet, G. Le Lay, Appl. Phys. Lett. 2010, 96, 183102.
- 16 P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 2012, 108, 155501.
- 17 Z. X. Guo, S. Furuya, J. i. Iwata, A. Oshiyama, Phys. Rev. B 2013, 87, 235435.
- 18 C. L. Lin, R. Arafune, K. Kawahara, M. Kanno, N. Tsukahara, E. Minamitani, Y. Kim, M. Kawai, N. Takagi, Phys. Rev. Lett. 2013, 110, 076801.
- 19 H. Liu, J. Gao, J. Zhao, J. Phys. Chem. C 2013, 117, 10353.
- 20 L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Nature Nanotechnol. 2015, 10, 227.
- 21 M. Chen, Z. Zhong, M. Weinert, Phys. Rev. B 2016, 94, 075409.
- 22 B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, K. Wu, Nano Lett. 2012, 12, 3507.
- 23 L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W. A. Hofer, H. J. Gao, Nano Lett. 2013, 13, 685.
- 24 T. Kaloni, M. Tahir, U. Schwingenschlögl, Sci. Rep. 2013, 3, 3192.
- 25 S. Kokott, L. Matthes, F. Bechstedt, Phys. Status Solidi RRL 2013, 7, 538.
- 26 J. Zhu, U. Schwingenschlogl, ACS Appl. Mater. Interfaces 2014, 6, 11675.
- 27 J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth, Nature 2007, 446, 60.
- 28 M. Ishigami, J. Chen, W. Cullen, M. Fuhrer, E. Williams, Nano Lett. 2007, 7, 1643.
- 29
E. A. Kim,
A. C. Neto,
EPL (Europhys. Lett.)
2008,
84, 57007.
10.1209/0295-5075/84/57007 Google Scholar
- 30 S. Babaee Touski, M. Pourfath, Appl. Phys. Lett. 2013, 103, 143506.
- 31 L. Ponomarenko, R. Yang, T. Mohiuddin, M. Katsnelson, K. Novoselov, S. Morozov, A. Zhukov, F. Schedin, E. Hill, A. Geim, Phys. Rev. Lett. 2009, 102, 206603.
- 32 N. Ma, D. Jena, Phys. Rev. X 2014, 4, 011043.
- 33 S. D. Sarma, S. Adam, E. Hwang, E. Rossi, Rev. Mod. Phys. 2011, 83, 407.
- 34 K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, Solid State Commun. 2008, 146, 351.
- 35 Z. Chaghazardi, S. B. Touski, M. Pourfath, R. Faez, J. Appl. Phys. 2016, 120, 053904.
- 36
S. B. Touski,
R. Roldán,
M. Pourfath,
M. P. López-Sancho,
Phys. Rev. B
2017,
95, 165301.
10.1103/PhysRevB.95.165301 Google Scholar
- 37
A. Rycerz,
J. Tworzydło,
C. Beenakker,
EPL (Europhys. Lett.)
2007,
79, 57003.
10.1209/0295-5075/79/57003 Google Scholar
- 38 C. H. Lewenkopf, E. R. Mucciolo, A. C. Neto, Phys. Rev. B 2008, 77, 081410.
- 39 N. Djavid, K. Khaliji, S. M. Tabatabaei, M. Pourfath, IEEE Trans. Electron Devices 2014, 61, 23.
- 40
M. Pourfath,
The Non-Equilibrium Green's Function Method for Nanoscale Device Simulation.
Springer-Verlag,
Vienna, Austria
2014.
10.1007/978-3-7091-1800-9 Google Scholar
- 41 M. L. Sancho, J. L. Sancho, J. L. Sancho, J. Rubio, J. Phys. F: Met. Phys. 1985, 15, 851.
- 42 S. Cahangirov, M. Topsakal, S. Ciraci, Phys. Rev. B 2010, 81, 195120.
- 43 A. Yazdanpanah, M. Pourfath, M. Fathipour, H. Kosina, S. Selberherr, IEEE Trans. Electron Devices 2012, 59, 433.
- 44 S. P. Dash, S. Sharma, R. S. Patel, M. P. de Jong, R. Jansen, Nature 2009, 462, 491.
- 45 B. Bishnoi, B. Ghosh, RSC Adv. 2013, 3, 26153.