Influence of Cation Order and Valence States on Magnetic Ordering in La2Ni1−xMn1+xO6
Mohd. Nasir
Department of Physics, Indian Institute of Technology Indore, Indore 453552, India
Search for more papers by this authorMahmud Khan
Department of Physics, Miami University, Oxford 45056, Ohio
Search for more papers by this authorSubhash Bhatt
Department of Physics, Miami University, Oxford 45056, Ohio
Search for more papers by this authorAnup Kumar Bera
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Search for more papers by this authorMohammad Furquan
Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
Search for more papers by this authorSunil Kumar
Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore 453552, India
Search for more papers by this authorSk. Mohammad Yusuf
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
Search for more papers by this authorNirmalendu Patra
Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Search for more papers by this authorDibyendu Bhattacharya
Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Search for more papers by this authorShambhu Nath Jha
Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Search for more papers by this authorShun-Wei Liu
Ming Chi University, New Taipei City 24301, Taiwan
Search for more papers by this authorSajal Biring
Ming Chi University, New Taipei City 24301, Taiwan
Search for more papers by this authorCorresponding Author
Somaditya Sen
Department of Physics, Indian Institute of Technology Indore, Indore 453552, India
Search for more papers by this authorMohd. Nasir
Department of Physics, Indian Institute of Technology Indore, Indore 453552, India
Search for more papers by this authorMahmud Khan
Department of Physics, Miami University, Oxford 45056, Ohio
Search for more papers by this authorSubhash Bhatt
Department of Physics, Miami University, Oxford 45056, Ohio
Search for more papers by this authorAnup Kumar Bera
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Search for more papers by this authorMohammad Furquan
Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
Search for more papers by this authorSunil Kumar
Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Indore 453552, India
Search for more papers by this authorSk. Mohammad Yusuf
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
Search for more papers by this authorNirmalendu Patra
Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Search for more papers by this authorDibyendu Bhattacharya
Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Search for more papers by this authorShambhu Nath Jha
Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Search for more papers by this authorShun-Wei Liu
Ming Chi University, New Taipei City 24301, Taiwan
Search for more papers by this authorSajal Biring
Ming Chi University, New Taipei City 24301, Taiwan
Search for more papers by this authorCorresponding Author
Somaditya Sen
Department of Physics, Indian Institute of Technology Indore, Indore 453552, India
Search for more papers by this authorAbstract
Among multifunctional double perovskite oxides, La2NiMnO6 has recently drawn significant attention due to its importance both in terms of understanding of fundamental physics and potential for device applications. The relative alteration in Ni:Mn ratio strongly influences the structural and magnetic properties of La2NiMnO6. The cation ratio and degree of cation order significantly affect the magnetic coupling of the two B-site cations in these compounds. In the present study, La2Ni1−xMn1+xO6 (x = −0.25, 0, 0.25) samples with different Ni:Mn ratio have been prepared using sol–gel method and modifications of the above physical properties from that of a stoichiometric sample of La2NiMnO6 are discussed. The crystalline structures of the samples varied with different ionic ratios. While all samples exhibited ferromagnetic behavior, long-range Ni/Mn magnetic ordering was detected in selected samples only. The experimental values of saturation magnetization were smaller than the theoretical spin-only moments, which suggests a less ordered state for all samples. Due to an increased antiferromagnetic interaction caused by antisite disorders, the saturation magnetization decreases while the coercive field increases with decreasing Mn content.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 M. W. Lufaso, P. W. Barnes, P. M. Woodward, Acta Crystallogr. B 2006, 62, 397.
- 2 R. I. Dass, J. B. Goodenough, Phys. Rev. B 2003, 67, 014401.
- 3 M. Nasir, S. Kumar, N. Patra, D. Bhattacharya, S. N. Jha, D. R. Basaula, S. Bhatt, M. Khan, S.-W. Liu, S. Biring, S. Sen, ACS Appl. Electron. Mater. 2019, 1, 141.
- 4 M. T. Anderson, K. B. Greenwood, G. A. Taylor, K. R. Poeppelmeier, Prog. Solid State Chem. 1993, 22, 197.
- 5 K. Yoshimatsu, K. Nogami, K. Watarai, K. Horiba, H. Kumigashira, O. Sakata, T. Oshima, A. Ohtomo, Phys. Rev. B 2015, 91, 054421.
- 6 R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, F. Rosei, Nat. Photonics 2014, 9, 61.
- 7 H. Das, M. D. Raychaudhury, T. Saha-Dasgupta, Appl. Phys. Lett. 2008, 92, 201912.
- 8 M. Hashisaka, D. Kan, A. Masuno, T. Terashima, M. Takano, K. Mibu, J. Magn. Magn. Mater. 2007, 310, 1975.
- 9 M. A. Subramanian, T. He, J. Chen, N. S. Rogado, T. G. Calvarese, A. W. Sleight, Adv. Mater. 2006, 18, 1737.
- 10 M. W. Lufaso, P. M. Woodward, Acta Crystallogr. B 2004, 60, 10.
- 11 R. I. Dass, J. Q. Yan, J. B. Goodenough, Phys. Rev. B 2003, 68, 064415.
- 12 H. Das, U. V. Waghmare, T. Saha-Dasgupta, D. D. Sarma, Phys. Rev. Lett. 2008, 100, 186402.
- 13 Y. Tokura, N. Nagaosa, Science 2000, 288, 462.
- 14 M. Nasir, M. Khan, S. Kumar, S. Bhatt, N. Patra, D. Bhattacharya, S. N. Jha, S. Biring, S. Sen, J. Magn. Magn. Mater. 2019, 483, 114.
- 15 M. Zhu, Y. Lin, E. W. C. Lo, Q. Wang, Z. Zhao, W. Xie, Appl. Phys. Lett. 2012, 100, 062406.
- 16 D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, S. Rajan, A. Sundaresan, U. V. Waghmare, R. Knut, O. Karis, P. Nordblad, D. D. Sarma, Phys. Rev. Lett. 2012, 108, 127201.
- 17 J. B. Goodenough, A. Wold, R. J. Arnott, N. Menyuk, Phys. Rev. 1961, 124, 373.
- 18 J. B. Goodenough, Phys. Rev. 1955, 100, 564.
- 19 C. L. Bull, D. Gleeson, K. S. Knight, J. Phys.: Condens. Matter 2003, 15, 4927.
- 20 V. L. J. Joly, P. A. Joy, S. K. Date, C. S. Gopinath, Phys. Rev. B 2002, 65, 184416.
- 21 X.-W. Jin, L. Lu, S.-B. Mi, M. Liu, C.-L. Jia, Appl. Phys. Lett. 2016, 109, 031904.
- 22 Y. Guo, L. Shi, S. Zhou, J. Zhao, W. Liu, Appl. Phys. Lett. 2013, 102, 222401.
- 23 S. M. Zhou, Y. Q. Guo, J. Y. Zhao, S. Y. Zhao, L. Shi, Appl. Phys. Lett. 2010, 96, 262507.
- 24 R. Takahashi, I. Ohkubo, K. Yamauchi, M. Kitamura, Y. Sakurai, M. Oshima, T. Oguchi, Y. Cho, M. Lippmaa, Phys. Rev. B 2015, 91, 134107.
- 25 H. Guo, A. Gupta, M. Varela, S. Pennycook, J. Zhang, Phys. Rev. B 2009, 79, 172402.
- 26 J. L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, J. B. Torrance, Phys. Rev. B 1992, 46, 4414.
- 27 P. G. Radaelli, S. W. Cheong, Phys. Rev. B 2002, 66, 094408.
- 28 C. L. Bull, H. Y. Playford, K. S. Knight, G. B. G. Stenning, M. G. Tucker, Phys. Rev. B 2016, 94, 014102.
- 29 L. López-Mir, R. Galceran, J. Herrero-Martín, B. Bozzo, J. Cisneros-Fernández, E. V. Pannunzio Miner, A. Pomar, L. Balcells, B. Martínez, C. Frontera, Phys. Rev. B 2017, 95, 224434.
- 30 D. Yang, W. Wang, T. Yang, G. I. Lampronti, H. Ye, L. Wu, Q. Yu, S. Lu, APL Mater. 2018, 6, 066102.
- 31 S. Zhao, L. Shi, S. Zhou, J. Zhao, H. Yang, Y. Guo, J. Appl. Phys. 2009, 106, 123901.
- 32 L. Guo, Y. Bai, C. Huang, W. Ma, J. Appl. Phys. 2018, 124, 065103.
- 33 M. N. Iliev, M. V. Abrashev, A. P. Litvinchuk, V. G. Hadjiev, H. Guo, A. Gupta, Phys. Rev. B 2007, 75, 104118.
- 34 M. N. Iliev, H. Guo, A. Gupta, Appl. Phys. Lett. 2007, 90, 151914.
- 35 C. L. Bull, P. F. McMillan, J. Solid State Chem. 2004, 177, 2323.
- 36 C. Mitra, Z. Hu, P. Raychaudhuri, S. Wirth, S. I. Csiszar, H. H. Hsieh, H. J. Lin, C. T. Chen, L. H. Tjeng, Phys. Rev. B 2003, 67, 092404.
- 37 F. Nolting, A. Scholl, J. Stohr, J. W. Seo, J. Fompeyrine, H. Siegwart, J. P. Locquet, S. Anders, J. Luning, E. E. Fullerton, M. F. Toney, M. R. Scheinfein, H. A. Padmore, Nature 2000, 405, 767.
- 38 M. W. Haverkort, Z. Hu, J. C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N. B. Brookes, H. H. Hsieh, H. J. Lin, C. T. Chen, L. H. Tjeng, Phys. Rev. Lett. 2006, 97, 176405.
- 39 S. Ray, A. Kumar, D. D. Sarma, R. Cimino, S. Turchini, S. Zennaro, N. Zema, Phys. Rev. Lett. 2001, 87, 097204.
- 40 Q.-H. Wu, M. Liu, W. Jaegermann, Mater. Lett. 2005, 59, 1980.
- 41 M. Stojanović, R. G. Haverkamp, C. A. Mims, H. Moudallal, A. J. Jacobson, J. Catal. 1997, 166, 315.
- 42 A. T. Fulmer, J. Dondlinger, M. A. Langell, Appl. Surf. Sci. 2014, 305, 544.
- 43 H. Z. Guo, J. Burgess, E. Ada, S. Street, A. Gupta, M. N. Iliev, A. J. Kellock, C. Magen, M. Varela, S. J. Pennycook, Phys. Rev. B 2008, 77, 174423.
- 44 I. S. Elfimov, V. I. Anisimov, G. A. Sawatzky, Phys. Rev. Lett. 1999, 82, 4264.
- 45 F. Bridges, C. H. Booth, M. Anderson, G. H. Kwei, J. J. Neumeier, J. Snyder, J. Mitchell, J. S. Gardner, E. Brosha, Phys. Rev. B 2001, 63, 214405.
- 46 Y. Guo, L. Shi, S. Zhou, J. Zhao, W. Liu, Appl. Phys. Lett. 2013, 102, 222401.
- 47 M. Maryško, Z. Jirák, K. Knížek, C. Autret-Lambert, J. Magn. Magn. Mater. 2010, 322, 1392.
- 48 M. P. Singh, K. D. Truong, S. Jandl, P. Fournier, J. Appl. Phys. 2010, 107, 09D917.
- 49 R. I. Dass, J. Q. Yan, J. B. Goodenough, Phys. Rev. B 2003, 68, 064415.
- 50 J. Blasco, J. García, M. C. Sánchez, J. Campo, G. Subías, J. Pérez-Cacho, Eur. Phys. J. B 2002, 30, 469.
- 51 V. L. J. Joly, P. A. Joy, S. K. Date, C. S. Gopinath, Phys. Rev. B 2002, 65, 184416.
- 52 M. Oumezzine, S. Kallel, O. Peña, N. Kallel, T. Guizouarn, F. Gouttefangeas, M. Oumezzine, J. Alloys Compd. 2014, 582, 640.
- 53 Q. Li, L. Xing, M. Xu, J. Alloys Compd. 2017, 710, 771.
- 54 D. Pramanik, S. Mukherjee, S. Dan, A. Nandy, S. K. Pradhan, P. Dasgupta, A. Poddar, M. Mukherjee, B. Manjunath, P. A. Joy, Mater. Res. Bull. 2018, 102, 248.
- 55 M. Retuerto, Á. Muñoz, M. J. Martínez-Lope, J. A. Alonso, F. J. Mompeán, M. T. Fernández-Díaz, J. Sánchez-Benítez, Inorg. Chem. 2015, 54, 10890.