Silicon Solar Cells with Embedded Silicon-on-Insulation Layer via Nitrogen Ion Beam Implantation
Rajkumar Sahu
Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University, Jeonju 54896, South Korea
Search for more papers by this authorSrikanta Palei
Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University, Jeonju 54896, South Korea
Search for more papers by this authorJonghun Mun
Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University, Jeonju 54896, South Korea
Search for more papers by this authorCorresponding Author
Keunjoo Kim
Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University, Jeonju 54896, South Korea
Search for more papers by this authorRajkumar Sahu
Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University, Jeonju 54896, South Korea
Search for more papers by this authorSrikanta Palei
Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University, Jeonju 54896, South Korea
Search for more papers by this authorJonghun Mun
Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University, Jeonju 54896, South Korea
Search for more papers by this authorCorresponding Author
Keunjoo Kim
Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University, Jeonju 54896, South Korea
Search for more papers by this authorAbstract
In this research, silicon solar cells with embedded silicon-on-insulation layer obtained via nitrogen ion beam implantation are investigated. The embedded layer acts as a minority carrier-blocking layer for the silicon solar cells, which results in the suppression of carrier recombination from the surface due to the formation of the silicon-on-insulation layer. This is achieved by integrating nitrogen ion implantation as a carrier reduction layer, which has a band offset asymmetry with silicon. The implantation is involved with the formation of surface defects by forming amorphous layers on Si surfaces. The electroluminescence images show that defects related to high energy nitrogen ion implantation are involved in the emission mechanism compared to low energy implanted nitrogen ion. From current–voltage analysis, the conversion efficiencies of nitrogen ion implanted cells are found lower than the reference cell, but the cell implanted with low energy nitrogen ion enhances the short circuit current density.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 X. M. Li, H. W. Zhu, K. L. Wang, A. Y. Cao, J. Q. Wei, C. Y. Li, Y. Jia, Z. Li, X. Li, D. H. Wu, Adv. Mater. 2011, 22, 2743.
- 2 C. Xie, J. S. Jie, B. Nie, T. X. Yan, Q. Li, P. Lv, F. Z. Li, M. Z. Wang, C. Y. Wu, L. Wang, L. B. Luo, Appl. Phys. Lett. 2012, 100, 193103.
- 3 X. C. Miao, S. Tongay, M. K. Petterson, K. Berka, A. G. Rinzler, B. R. Appleton, A. F. Hebard, Nano Lett. 2012, 12, 2745.
- 4 M. Ono, Z. Tang, R. Ishikawa, T. Gotou, K. Ueno, H. Shirai, Appl. Phys. Express 2012, 5, 032301.
- 5 S. Avasthi, S. Lee, Y. L. Loo, J. C. Sturm, Adv. Mater. 2011, 23, 5762.
- 6 X. J. Shen, B. Q. Sun, D. Liu, S. T. Lee, J. Am. Chem. Soc 2011, 133, 19408.
- 7 H. C. Card, E. H. Rhoderick, J. Phys. D: Appl. Phys. 1971, 4, 1589.
- 8 R. B. Godfrey, M. A. Green, Appl. Phys. Lett 1979, 34, 790.
- 9 R. Hezel, Progr. Photovolt.: Res. Appl. 1997, 5, 109.
- 10 M. A. Green, F. D. King, J. Shewchun, Solid State Electron. 1974, 17, 551.
- 11 Z. Zhuo, Y. Sannomiya, Y. Kanetani, T. Yamada, H. Ohmi, H. Kakiuchi, K. Yasutake, Nanoscale Res. Lett. 2013, 8, 201.
- 12 N. Konofaos, E. K. Evangelou, Semicond. Sci. Technol. 2003, 18, 56.
- 13 Z. Yu, M. Aceves, J. Carrillo, R. L. Estopier, Thin Solid Films 2006, 515, 2366.
- 14 J. P. Ponponand, P. Siffert, J. Appl. Phys. 1976, 47, 3248.
- 15 L. Tous, M. Aleman, R. Russell, E. Cornagliotti, P. Choulat, A. Uruena, S. Singh, J. John, F. Duerinckx, J. Poortmans, R. Mertens, Progr. Photovolt.: Res. Appl. 2015, 23, 660.
- 16 U. Wurfel, A. Cuevas, P. Wurfel, IEEE J. Photovolt. 2015, 5, 461.
- 17 A. G. Aberle, Progr. Photovolt. Res. Appl. 2000, 8, 473.
- 18 J. F. Ziegler, J. P. Biersack, M. D. Ziegler, The Stopping and Range of Ions in Solids, SRIM Software, 2008, http://www.srim.org/
- 19 S. M. Malik, D. E. Muller, K. Sridharan, R. P. Fetherston, N. Tran, J. R. Conrad, J. Appl. Phys. 1995, 77, 1015.
- 20 P. H. Chang, C. Slawinski, B. Y. Mao, H. W. Lam, J. Appl. Phys. 1987, 61, 166.
- 21
E. Hourdakis,
A. G. Nassiopoulou,
A. Parisini,
M. A. Reading,
J. A. V. D. Berg,
L. Sygellou,
S. Ladas,
P. Petrik,
A. Nutsch,
M. Wolf,
G. Roeder,
J. Vac. Sci. Technol.
2011,
29, 022201.
10.1116/1.3556938 Google Scholar
- 22 M. Fried, T. Lohner, J. M. M. Denijs, A. V. Silfhout, L. J. Hanekamp, Z. Laczik, N. Q. Khanh, J. Gyulai, J. Appl. Phys. 1989, 66, 5052.
- 23 D. Gracin, A. Gajovic, K. Juraic, M. Ceh, Z. Remes, A. Poruba, M. Vanecek, J. Non-Cryst. Solids. 2008, 354, 2286.
- 24 D. H. Ma, W. J. Zhang, R. Y. Luo, Z. Y. Jiang, Q. Ma, X. B. Ma, Z. Q. Fan, D. Y. Song, L. Zhang, Superlattice. Microst. 2016, 93, 269.
- 25 V. A. Volodin, M. D. Efremov, V. A. Gritsenko, S. A. Kochubei, Appl. Phys. Lett. 1998, 73, 1212.
- 26 Q. Zhang, Z. Yang, D. Jia, Q. Chen, Y. Zhou, New J. Chem. 2016, 40, 7034.
- 27 A. D. Yadav, R. H. Polji, V. Singh, S. K. Dubey, T. K. G. Rao, Nucl. Instr. Meth. Phys. Res. B 2006, 245, 475.
- 28 N. Jehanathan, Y. Liu, B. Walmsley, J. Dell, M. Saunders, J. Appl. Phys 2006, 100, 123516.
- 29 M. Khalifa, M. Hajji, H. Ezzaouia, Nanoscale Res. Lett. 2012, 7, 444.
- 30 L. He, W. A. Anderson, J. Elect. Mat. 1991, 20, 5.
- 31 D. H. Macdonald, H. Maeckel, S. Doshi, W. Brendle, A. Cuevas, J. S. Williams, M. J. Conway, Appl. Phys. Lett. 2003, 82, 2987.
- 32 D. Skarlatos, E. Kapetanakis, P. Normand, C. Tsamis, M. Perego, S. Ferrari, M. Fanciulli, D. Tsoukalas, J. Appl. Phys. 2004, 96, 300.
- 33 I. Yonenaga, J. Appl. Phys. 2005, 98, 023517.
- 34 T. Lohner, E. Kotai, N. Q. Khanh, Z. Toth, M. Fried, K. Vedam, N. V. Nguyen, L. J. Hanekamp, A. V. Silfhout, Nucl. Instr. Meth. Phys. Res. 1994, 85, 335.
- 35 W. Skorupa, U. Kreissig, E. Hensel, H. Bartsch, Electron. Lett. 1984, 20, 426.
- 36 B. Mitchell, J. W. Weber, D. Walter, D. Macdonald, T. Trupke, J. Appl, Phys. Lett 2012, 112, 063116.
- 37 A. Loni, A. J. Simons, T. I. Cox, P. D. J. Calcottand, L. T. Canham, Electron. Lett. 1995, 31, 1288.
- 38 M. Ichimura, H. Sakakibara, K. Wada, M. Karo, J. Appl. Phys. 2013, 114, 114505.
- 39 M. A. Green, Solid State Electron. 1981, 24, 788.