Electrical, Optical, and Structural Characteristics of CH3NH3PbI3 Perovskite Light-Emitting Diodes
Munsik Oh
School of Semiconductor and Chemical Engineering, and Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea
Search for more papers by this authorSeung-Il Jo
School of Semiconductor and Chemical Engineering, and Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea
Search for more papers by this authorBhaskar Parida
School of Semiconductor and Chemical Engineering, and Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea
Search for more papers by this authorArjun Singh
School of Semiconductor and Chemical Engineering, and Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea
Search for more papers by this authorKeumjin Ko
School of Flexible and Printable Electronics, Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea
Search for more papers by this authorCorresponding Author
Jae-Wook Kang
School of Flexible and Printable Electronics, Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea
Search for more papers by this authorCorresponding Author
Hyunsoo Kim
School of Semiconductor and Chemical Engineering, and Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea
Search for more papers by this authorMunsik Oh
School of Semiconductor and Chemical Engineering, and Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea
Search for more papers by this authorSeung-Il Jo
School of Semiconductor and Chemical Engineering, and Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea
Search for more papers by this authorBhaskar Parida
School of Semiconductor and Chemical Engineering, and Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea
Search for more papers by this authorArjun Singh
School of Semiconductor and Chemical Engineering, and Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea
Search for more papers by this authorKeumjin Ko
School of Flexible and Printable Electronics, Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea
Search for more papers by this authorCorresponding Author
Jae-Wook Kang
School of Flexible and Printable Electronics, Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea
Search for more papers by this authorCorresponding Author
Hyunsoo Kim
School of Semiconductor and Chemical Engineering, and Semiconductor Physics Research Center, Chonbuk National University, Jeonju 561-756, Republic of Korea
Search for more papers by this authorAbstract
Electrical, optical, and structural characteristics of perovskite light-emitting diodes (PeLEDs) are investigated. The PeLED consisting of ITO/ZnO/MAPbI3 (CH3NH3PbI3)/spiro-OMeTAD/Ag structures shows a peak emission wavelength of 766 nm, turn-on voltage of 1.7 V, reverse breakdown voltage of −5.4 V, current efficiency of 1.5 × 10−4 cdA−1, maximum luminance of 0.1 cdm−2, and an external quantum efficiency of 0.2% at bias voltage of 3 V (or a current density of 617 mA cm−2). The PeLED also shows a significant output drop at higher bias voltage. According to the analyses of forward J–V curves and structural studies, this could be associated with the anomalously large ideality factor of 12.8 and the high series resistance of 2.8 Ω cm2, that is, the leakage current through parasitic shunt path (possibly through pinholes in the perovskite) and accelerated Joule-heating result in a significant output degradation.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 D. Liu, T. L. Kelly, Nat. Photon. 2014, 8, 133.
- 2 H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.
- 3 W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, A. D. Mohite, Science 2015, 347, 522.
- 4 M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J. P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Science 2016, 354, 206.
- 5 W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, Science 2017, 356, 1376.
- 6 Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credigngton, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotech. 2014, 9, 687.
- 7 H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T.-W. Lee, Science 2015, 350, 1222.
- 8 G. Li, Z.-K. Tan, D. Di, M. L. Lai, L. Jiang, J. H. -W. Lim, R. H. Friend, N. C. Greenham, Nano Lett. 2015, 15, 2640.
- 9 J. Xing, F. Tan, Y. Zhao, S. Chen, H. Yu, Q. Zhang, R. Zeng, H. V. Demir, X. Sun, A. Huan, Q. Xiong, ACS Nano 2016, 10, 6623.
- 10 Z. Shi, Y. Li, Y. Zhang, Y. Chen, X. Li, D. Wu, T. Xu, C. Shan, G. Du, Nano Lett. 2017, 17, 313.
- 11 S. Zhang, C. Yi, N. Wang, Y. Sun, W. Zou, Y. Wei, Y. Cao, Y. Miao, R. Li, Y. Yin, N. Zhao, J. Wang, W. Huang, Adv. Mater. 2017, 29, 1606600–1.
- 12 J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 2015, 27, 7162.
- 13 X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. H. Choy, A. L. Rogach, Nano Lett. 2016, 16, 1415.
- 14 Z. Shi, X. Sun, D. Wu, T. Xu, S. Zhuang, Y. Tian, X. Li, G. Du, Nanoscale 2016, 8, 10035.
- 15 Y. Ling, Z. Yuan, Y. Tian, X. Wang, J. C. Wang, Y. Xin, K. Hanson, B. Ma, H. Gao, Adv. Mater. 2016, 28, 305.
- 16 L. Zhao, Y.-W. Yeh, N. L. Tran, F. Wu, Z. Xiao, R. A. Kerner, Y. L. Lin, G. D. Scholes, N. Yao, B. P. Rand, ACS Nano 2017, 11, 3957.
- 17 Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Scholes, B. P. Rand, Nat. Photon. 2017, 11, 108.
- 18 X. Zhang, B. Xu, W. Wang, S. Liu, Y. Zheng, S. Chen, K. Wang, X. W. Sun, ACS Appl. Mater. Interfaces 2017, 9, 4926.
- 19 P. Chen, Z. Xiong, X. Wu, M. Shao, Y. Meng, Z. Xiong, C. Gao, J. Phys. Chem. Lett. 2017, 8, 3961.
- 20 Y. Chih, J. Wang, R. Yang, C. Liu, Y. Chang, Y. Fu, W. Lai, P. Chen, T. Wen, Y. Huang, Adv. Mater. 2016, 28, 8687.
- 21 Y. Ling, Y. Tian, X. Wang, J. C. Wang, J. M. Knox, F. PerezOrive, Y. Du, L. Tan, K. Hanson, B. Ma, Adv. Mater. 2016, 28, 8983.
- 22 K. Qasim, B. Wang, Y. Zhang, P. Li, Y. Wang, S. Li, S. T. Lee, L. S. Liao, W. Lei, Q. Bao, Adv. Funct. Mater. 2017, 27, 1606874–1.
- 23 J.-H. Im, I.-H. Jang, N. Pellet, M. Gratzel, N.-G. Park, Nat. Nanotech. 2014, 9, 927.
- 24 M. Grätzel, Nat. Mater. 2014, 13, 838.
- 25 R. T. Ginting, E.-S. Jung, M.-K. Jeon, W.-Y. Jin, M. Song, J.-W. Kang, Nano Energy 2016, 27, 569.
- 26 T. Oku, Intech 2015, Chap. 3.
- 27 Y. Kawamura, H. Mashiyama, K. Hasebe, J. Phys. Soc. Jpn. 2002, 71, 1694.
- 28 N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang, W. Huang, Nat. Photon. 2016, 10, 699.
- 29 O. A. Jaramillo-Quintero, R. S. Sanchez, M. Rincon, I. Mora-Sero, J. Phys. Chem. Lett. 2015, 6, 1883.
- 30 H. Shahroosvand, S. Rezaei, E. Mohajerani, M. Mahmoudi, M. A. Kamyabi, S. Nasiri, New J. Chem. 2014, 38, 5312.
- 31 N. C. Greenham, R. H. Friend, D. D. C. Bradley, Adv. Mater. 1994, 6, 491.
- 32 G. A. H. Wetzelaer, M. Kuik, H. T. Nicolai, P. W. M. Blom, Phys. Rew. B 2011, 83, 165204–1.
- 33 C. T. Sah, R. N. Noyce, W. Shockley, Proc. IRE 1957, 45, 1228.
- 34 H. C. Casey, Jr., J. Muth, S. Krishnankutty, J. M. Zavada, Appl. Phys. Lett. 1996, 68, 2867.
- 35 P. Perlin, M. Osiñski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas, P. Sartori, Appl. Phys. Lett. 1996, 69, 1680.
- 36 X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, D. Walker, IEEE Electron Device Lett. 2002, 23, 535.
- 37 K. Mayes, A. Yasan, R. McClinttock, D. Shiell, S. R. Darvish, P. Kung, M. Razeghi, Appl. Phys. Lett. 2004, 84, 1046.
- 38 D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, D. D. Koleske, Appl. Phys. Lett. 2009, 94, 081113–1.
- 39 P. W. M. Blom, M. J. M. de Jong, J. J. M. Vleggaar, Appl. Phys. Lett. 1996, 68, 3308.
- 40 H. Kim, D.-J. Kim, S.-J. Park, H. Hwang, J. Appl. Phys. 2001, 89, 1506.
- 41 A. Haldi, A. Sharma, W. J. Potscavage, Jr., B. Kippelen, J. Appl. Phys. 2008, 104, 064503–1.
- 42 W. Shockley, W. T. Read, Phys. Rev. 1952, 87, 835.