The effect of samarium doping on structure and enhanced thermionic emission properties of lanthanum hexaboride fabricated by spark plasma sintering
Corresponding Author
Shenlin Zhou
College of Mathematics and Physics, Jinggangshan University, Jian, 343409 P.R. China
Corresponding author: e-mail [email protected], Phone: +867968124959, Fax: +867968124959Search for more papers by this authorJiuxing Zhang
Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124 P.R. China
Search for more papers by this authorDanmin Liu
Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124 P.R. China
Search for more papers by this authorQianglin Hu
College of Mathematics and Physics, Jinggangshan University, Jian, 343409 P.R. China
Search for more papers by this authorQingzhen Huang
NIST Center for Neutron Research, National Institute of Standards and Technology, MD, 20899 USA
Search for more papers by this authorCorresponding Author
Shenlin Zhou
College of Mathematics and Physics, Jinggangshan University, Jian, 343409 P.R. China
Corresponding author: e-mail [email protected], Phone: +867968124959, Fax: +867968124959Search for more papers by this authorJiuxing Zhang
Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124 P.R. China
Search for more papers by this authorDanmin Liu
Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124 P.R. China
Search for more papers by this authorQianglin Hu
College of Mathematics and Physics, Jinggangshan University, Jian, 343409 P.R. China
Search for more papers by this authorQingzhen Huang
NIST Center for Neutron Research, National Institute of Standards and Technology, MD, 20899 USA
Search for more papers by this authorAbstract
Single-phase polycrystalline solid solutions (La1−xSmx)B6 (x = 0, 0.2, 0.4, 0.8, 1) are fabricated by spark plasma sintering (SPS). This study demonstrates a systematic investigation of structure–property relationships in Sm-doped LaB6 ternary rare-earth hexaborides. The microstructure, crystallographic orientation, electrical resistivity, and thermionic emission performance of these compounds are investigated. Analysis of the results indicates that samarium (Sm) doping has a noticeable effect on the structure and performance of lanthanum hexaboride (LaB6). The analytical investigation of the electron backscatter diffraction confirms that (La0.6Sm0.4)B6 exhibits a clear (001) texture that results in a low work function. Work functions are determined by pulsed thermionic diode measurements at 1500–1873 K. The (La0.6Sm0.4)B6 possesses improved thermionic emission properties compared to LaB6. The current density of (La0.6Sm0.4)B6 is 42.4 A cm−2 at 1873 K, which is 17.5% larger than that of LaB6. The values of ΦR for (La0.6Sm0.4)B6 and LaB6 are 1.98 ± 0.03 and 1.67 ± 0.03 eV, respectively. Furthermore, the Sm substitution of lanthanum (La) effectively increases the electrical resistivity. These results reveal that Sm doping lead to significantly enhanced thermionic emission properties of LaB6. The compound (La0.6Sm0.4)B6 appears most promising as a future emitter material.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
pssa201330152-sm-0001-SuppData-S1.pdf39.9 KB | Supporting Data |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 P. Liu, Y. Wei, K. L. Jiang, Q. Sun, X. B. Zhang, and S. S. Fan, Phys. Rev. B 73, 235412 (2006).
- 2 S. Yamamoto, Rep. Prog. Phys. 69, 181 (2006).
- 3 D. M. Goebel and R. M. Watkins, Rev. Sci. Instrum. 81, 083504 (2010).
- 4 K. C. Qi, Z. L. Lin, and W. B. Chen, Appl. Phys. Lett. 93, 093503 (2008).
- 5 H. Zhang, J. Tang, J. S. Yuan, J. Ma, N. Shinya, K. Nakajima, H. Murakami, T. Ohkubo, and L. C. Qin, Nano Lett. 10, 3539 (2010).
- 6 R. B. Joseph, M. J. Robert, R. D. David, and L. C. Chin, Chem. Mater. 23, 2606 (2011).
- 7 P. T. Li, C. Li, J. F. Nie, J. Ouyang, and X. F. Liu, CrystEngComm 15, 411 (2013).
- 8 D. J. Late, M. A. More, S. Sinha, K. Dasgupta, P. Misra, B. N. Singh, L. M. Kukreja, S. V. Bhoraskar, and D. S. Joag, Appl. Phys. A 104, 677 (2011).
- 9 Q. H. Fan and Y. M. Zhao, Ceram. Int. 6, 6271 (2013).
- 10 E. Chu and D. M. Goebel, Plasma Sci. Technol. 40, 2133 (2012).
- 11 B. V. Compernolle, W. Gekelman, P. Pribyl, and C. M. Cooper, Phys. Plasmas 18, 123501 (2011).
- 12 M. Contre, P. Martin, and M. Quetier, USA, 4265666, 1981.
- 13 D. J. Late, M. A. More, D. S. Joag, P. Misra, B. N. Singh, and L. M. Kukreja, Appl. Phys. Lett. 89, 123510 (2006).
- 14 J. R. Brewer, N. Deo, Y. M. Wang, and C. L. Cheung, Chem. Mater. 19, 6379 (2007).
- 15 D. J. Late, M. A. More, P. Misra, B. N. Singh, L. M. Kukreja, and D. S. Joag, Ultramicroscopy 107, 825 (2007).
- 16 V. R. R. Medicherla, S. Patil, R. S. Singh, and K. Maiti, Appl. Phys. Lett. 90, 062507 (2007).
- 17 S. L. Zhou, J. X. Zhang, D. M. Liu, Z. L. Lin, Q. Z. Huang, L. H. Bao, R. G. Ma, and Y. F. Wei, Acta Mater. 58, 4978 (2010).
- 18 U. A. Tamburini, F. Maglia, G. Chiodelli, A. Tacca, G. Spinolo, P. Riello, S. Bucella, and Z. A. Munir, Adv. Funct. Mater. 16, 2363 (2006).
- 19 S. Otani, H. Hiraoka, M. Ide, and Y. Ishizawa, J. Alloys Compd. 189, L1 (1992).
- 20 L. H. Bao, O. Tegus, J. X. Zhang, X. Zhang, and Y. K. Huang, J. Alloys Compd. 558, 39 (2013).
- 21 S. Patil, G. Adhikary, G. Balakrishnan, and K. Maiti, Appl. Phys. Lett. 96, 092106 (2007).
- 22 E. K. Storms, J. Appl. Phys. 54, 1076 (1983).
- 23 G. V. Samsonov, A. I. Kondrashov, L. N. Okhremchuk, I. A. Podchernyaeva, N. I. Siman, and V. S. Fomenko, J. Less-Common Met. 67, 415 (1979).
- 24 M. Futamoto, N. Nakazawa, and U. Kawabe, Surf. Sci. 100, 470 (1980).
- 25 M. Aono, T. Tanaka, E. Bannai, and S. Kawai, Appl. Phys. Lett. 31, 323 (1977).
- 26 M. A. Uijttewaal, G. A. Wijs, and R. A. Groot, J. Phys. Chem. B 110, 18459 (2006).
- 27 M. Trenary, Sci. Technol. Adv. Mater. 13, 023002 (2012).
- 28 M. Aono, R. Nishitani, C. Oshima, T. Tanaka, E. Bannai, and S. Kawai, Surf. Sci. 86, 631 (1979).
- 29 J. M. Tarascon, Y. Isikawa, B. Chevalier, J. Etourneau, and P. Hagenmuller, J. Phys. 41, 1135 (1980).
- 30 E. K. Storms, J. Appl. Phys. 52, 2963 (1981).
- 31 A. C. Larson and R. B. Von Dreele, Los Alamos Natl. Lab. Rep. LAUR 86, 748 (2004).
- 32 T. S. Altshuler, Y. V. Goryunov, and M. S. Bresler, Phys. Rev. B 73, 235210 (2006).
- 33 R. G. Goodrich, D. P. Young, N. Harrison, C. Capan, and Z. Fisk, Phys. Rev. B 80, 233101 (2009).
- 34 N. Ogita, S. Nagai, N. Okamoto, M. Udagawa, J. Akimitsu, and S. Kunii, Phys. Rev. B 68, 224309 (2003).
- 35 R. K. Selvan, I. Genish, I. Perelshtein, J. M. C. Moreno, and A. Gedanken, J. Phys. Chem. C 112, 1797 (2008).
- 36 M. F. Zhang, L. Yuan, X. Q. Wang, H. Fan, X. Y. Wang, X. Y. Wu, H. Z. Wang, and Y. T. Qian, J. Solid State Chem. 181, 296 (2008).
- 37 T. Zscheckel, W. Wisniewski, and C. Russel, Adv. Funct. Mater. 22, 4969 (2012).
- 38 B. Yang, N. J. Park, B. I. Seo, Y. H. Oh, S. J. Kim, S. K. Hong, S. S. Lee, and Y. J. Park, Appl. Phys. Lett. 87, 062902 (2005).
- 39 P. R. Davis, A. G. Mark, G. A. Schwind, L. W. Swanson, and J. J. Hutta, Surf. Sci. 37, 381 (1989).
- 40 C. H. Chen, Y. Xuan, and S. Otani, J. Alloys Compd. 350, L4 (2003).
- 41 C. M. Chen, W. C. Zhou, and L. T. Zhang, J. Cryst. Growth 191, 875 (1998).
- 42 J. M. Lafferty, J. Appl. Phys. 22, 305 (1951).
- 43 R. D. Young, Phys. Rev. 113, 110 (1959).
- 44 S. J. Mroczkowski, J. Vac. Sci. Technol. 9, 586 (1991).