Vaccine target and carrier molecule nontypeable Haemophilus influenzae protein D dimerizes like the close Escherichia coli GlpQ homolog but unlike other known homolog dimers
Seth P. Jones
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorKali H. Cook
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorMelody L. Holmquist
National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorLiam J. Almekinder
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorAnnie M. Delaney
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorRyhl Charles
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorNatalie Labbe
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorJanai Perdue
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorNiaya Jackson
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorMichael E. Pichichero
Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA
Search for more papers by this authorRavinder Kaur
Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA
Search for more papers by this authorLea V. Michel
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorCorresponding Author
Michael L. Gleghorn
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Correspondence
Michael L. Gleghorn, School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, USA.
Email: [email protected]
Search for more papers by this authorSeth P. Jones
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorKali H. Cook
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorMelody L. Holmquist
National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorLiam J. Almekinder
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorAnnie M. Delaney
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorRyhl Charles
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorNatalie Labbe
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorJanai Perdue
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorNiaya Jackson
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorMichael E. Pichichero
Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA
Search for more papers by this authorRavinder Kaur
Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA
Search for more papers by this authorLea V. Michel
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Search for more papers by this authorCorresponding Author
Michael L. Gleghorn
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA
Correspondence
Michael L. Gleghorn, School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, USA.
Email: [email protected]
Search for more papers by this authorSeth P. Jones and Kali H. Cook Co-first authors.
Funding information: R21 AI153936-01 NIDCD (PI: Kaur) and Rochester Regional Health (Pichichero)
Abstract
We have determined the 1.8 Å X-ray crystal structure of nonlipidated (i.e., N-terminally truncated) nontypeable Haemophilus influenzae (NTHi; H. influenzae) protein D. Protein D exists on outer membranes of H. influenzae strains and acts as a virulence factor that helps invade human cells. Protein D is a proven successful antigen in animal models to treat obstructive pulmonary disease (COPD) and otitis media (OM), and when conjugated to polysaccharides also has been used as a carrier molecule for human vaccines, for example in GlaxoSmithKline Synflorix™. NTHi protein D shares high sequence and structural identify to the Escherichia coli (E. coli) glpQ gene product (GlpQ). E. coli GlpQ is a glycerophosphodiester phosphodiesterase (GDPD) with a known dimeric structure in the Protein Structural Database, albeit without an associated publication. We show here that both structures exhibit similar homodimer organization despite slightly different crystal lattices. Additionally, we have observed both the presence of weak dimerization and the lack of dimerization in solution during size exclusion chromatography (SEC) experiments yet have distinctly observed dimerization in native mass spectrometry analyses. Comparison of NTHi protein D and E. coli GlpQ with other homologous homodimers and monomers shows that the E. coli and NTHi homodimer interfaces are distinct. Despite this distinction, NTHi protein D and E. coli GlpQ possess a triose-phosphate isomerase (TIM) barrel domain seen in many of the other homologs. The active site of NTHi protein D is located near the center of this TIM barrel. A putative glycerol moiety was modeled in two different conformations (occupancies) in the active site of our NTHi protein D structure and we compared this to ligands modeled in homologous structures. Our structural analysis should aid in future efforts to determine structures of protein D bound to substrates, analog intermediates, and products, to fully appreciate this reaction scheme and aiding in future inhibitor design.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in RCSB: Protein Data Bank at https://www.rcsb.org/, reference number 8CWP.
Supporting Information
Filename | Description |
---|---|
prot26418-sup-0001-FigureS1.docxWord 2007 document , 234.9 KB | Figure S1 Top, size exclusion chromatography (SEC) demonstrating the late elution of NTHi protein D when combined with NTHi outer membrane protein 26 (OMP26). Bottom, SDS PAGE and Coomassie Brilliant Blue staining demonstrating the late peak fractions used for crystallization only contained NTHi protein D. Note that SDS PAGE fractions (i.e., lanes) approximately correspond to the elution peaks/volumes directly above in the chromatogram. |
prot26418-sup-0002-FigureS2.docxWord 2007 document , 1.3 MB | Figure S2 NTHi protein D crystals approximately 2–3 mm × 120 μm. |
prot26418-sup-0003-FigureS3.docxWord 2007 document , 2.3 MB | Figure S3 GDPD homodimer interface orientation comparisons. Each chain A was aligned relative to one another to show the position of chain B when two different homodimers were aligned. The y-axis labels indicate the protein homodimer that is in yellow and the blue x-axis labels indicate the protein homodimer shown in blue. |
prot26418-sup-0004-TableS1.docxWord 2007 document , 17.8 KB | Table S1 Crystallographic data statistics for NTHi protein D (PDB 8CWP). |
prot26418-sup-0005-TableS2.docxWord 2007 document , 24.8 KB | Table S2 NTHi protein D homologs identified through BLAST and DALI analysis. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Bakaletz LO, Novotny LA. Nontypeable Haemophilus influenzae (NTHi). Trends Microbiol. 2018; 26(8): 727-728. doi:10.1016/j.tim.2018.05.001
- 2Forsgren A, Riesbeck K, Janson H. Protein D of Haemophilus influenzae: a protective nontypeable H. influenzae antigen and a carrier for pneumococcal conjugate vaccines. Clin Infect Dis. 2008; 46(5): 726-731. doi:10.1086/527396
- 3Jousimies-Somer HR, Savolainen S, Ylikoski JS. Bacteriological findings of acute maxillary sinusitis in young adults. J Clin Microbiol. 1988; 26(10): 1919-1925. doi:10.1128/jcm.26.10.1919-1925.1988
- 4Khan MN, Ren D, Kaur R, Basha S, Zagursky R, Pichichero ME. Developing a vaccine to prevent otitis media caused by nontypeable Haemophilus influenzae. Expert Rev Vaccines. 2016; 15(7): 863-878. doi:10.1586/14760584.2016.1156539
- 5Michel LV, Kaur R, Zavorin M, et al. Intranasal coinfection model allows for assessment of protein vaccines against nontypeable Haemophilus influenzae in mice. J Med Microbiol. 2018; 67(10): 1527-1532. doi:10.1099/jmm.0.000827
- 6Janson H, Hedén LO, Grubb A, Ruan MR, Forsgren A. Protein D, an immunoglobulin D-binding protein of Haemophilus influenzae: cloning, nucleotide sequence, and expression in Escherichia coli. Infect Immun. 1991; 59(1): 119-125. doi:10.1128/iai.59.1.119-125.1991
- 7Sasaki K, Munson RS. Protein D of Haemophilus influenzae is not a universal immunoglobulin D-binding protein. Infect Immun. 1993; 61(7): 3026-3031. doi:10.1128/iai.61.7.3026-3031.1993
- 8Prymula R, Peeters P, Chrobok V, et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet. 2006; 367(9512): 740-748. doi:10.1016/S0140-6736(06)68304-9
- 9Croxtall JD, Keating GM. Pneumococcal polysaccharide protein D-conjugate vaccine (Synflorix; PHiD-CV). Paediatr Drugs. 2009; 11(5): 349-357. doi:10.2165/11202760-000000000-00000
- 10Wilkinson TMA, Schembri S, Brightling C, et al. Non-typeable Haemophilus influenzae protein vaccine in adults with COPD: a phase 2 clinical trial. Vaccine. 2019; 37(41): 6102-6111. doi:10.1016/j.vaccine.2019.07.100
- 11Munson RS, Sasaki K. Protein D, a putative immunoglobulin D-binding protein produced by Haemophilus influenzae, is glycerophosphodiester phosphodiesterase. J Bacteriol. 1993; 175(14): 4569-4571. doi:10.1128/jb.175.14.4569-4571.1993
- 12Song XM, Forsgren A, Janson H. The gene encoding protein D (hpd) is highly conserved among Haemophilus influenzae type b and nontypeable strains. Infect Immun. 1995; 63(2): 696-699. doi:10.1128/iai.63.2.696-699.1995
- 13Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1): 27-30. doi:10.1093/nar/28.1.27
- 14Ahrén IL, Janson H, Forsgren A, Riesbeck K. Protein D expression promotes the adherence and internalization of non-typeable Haemophilus influenzae into human monocytic cells. Microb Pathog. 2001; 31(3): 151-158. doi:10.1006/mpat.2001.0456
- 15Corda D, Mosca MG, Ohshima N, Grauso L, Yanaka N, Mariggiò S. The emerging physiological roles of the glycerophosphodiesterase family. FEBS J. 2014; 281(4): 998-1016. doi:10.1111/febs.12699
- 16Fan X, Goldfine H, Lysenko E, Weiser JN. The transfer of choline from the host to the bacterial cell surface requires glpQ in Haemophilus influenzae. Mol Microbiol. 2001; 41(5): 1029-1036. doi:10.1046/j.1365-2958.2001.02571.x
- 17Larson TJ, Ehrmann M, Boos W. Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J Biol Chem. 1983; 258(9): 5428-5432.
- 18Krissinel E. Crystal contacts as nature's docking solutions. J Comput Chem. 2010; 31(1): 133-143. doi:10.1002/jcc.21303
- 19Jackson CJ, Carr PD, Liu JW, Watt SJ, Beck JL, Ollis DL. The structure and function of a novel glycerophosphodiesterase from Enterobacter aerogenes. J Mol Biol. 2007; 367(4): 1047-1062. doi:10.1016/j.jmb.2007.01.032
- 20Masood R, Ullah K, Ali H, Ali I, Betzel C, Ullah A. Spider's venom phospholipases D: a structural review. Int J Biol Macromol. 2018; 107: 1054-1065. doi:10.1016/j.ijbiomac.2017.09.081
- 21Murakami MT, Fernandes-Pedrosa MF, de Andrade SA, et al. Structural insights into the catalytic mechanism of sphingomyelinases D and evolutionary relationship to glycerophosphodiester phosphodiesterases. Biochem Biophys Res Commun. 2006; 342(1): 323-329. doi:10.1016/j.bbrc.2006.01.123
- 22Micoli F, Adamo R, Costantino P. Protein carriers for Glycoconjugate vaccines: history, selection criteria, characterization and new trends. Molecules. 2018; 23(6):1451. doi:10.3390/molecules23061451
- 23Grosse-Kunstleve RW, Sauter NK, Moriarty NW, Adams PD. The computational crystallography toolbox: crystallographic algorithms in a reusable software framework. J Appl Cryst. 2002; 35(1): 126-136.
- 24Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 2): 125-132. doi:10.1107/S0907444909047337
- 25Winn MD, Ballard CC, Cowtan KD, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 4): 235-242. doi:10.1107/S0907444910045749
- 26Winter G, McAuley KE. Automated data collection for macromolecular crystallography. Methods. 2011; 55(1): 81-93. doi:10.1016/j.ymeth.2011.06.010
- 27McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Cryst. 2007; 40(Pt 4): 658-674. doi:10.1107/S0021889807021206
- 28Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46(W1): W296-W303. doi:10.1093/nar/gky427
- 29Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of coot. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4): 486-501. doi:10.1107/S0907444910007493
- 30Adams PD, Afonine PV, Bunkóczi G, et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 2): 213-221. doi:10.1107/S0907444909052925
- 31Afonine PV, Grosse-Kunstleve RW, Echols N, et al. Towards automated crystallographic structure refinement with phenix.Refine. Acta Crystallogr D Biol Crystallogr. 2012; 68(Pt 4): 352-367. doi:10.1107/S0907444912001308
- 32Liebschner D, Afonine PV, Baker ML, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol. 2019; 75(Pt 10): 861-877. doi:10.1107/S2059798319011471
- 33Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003; 31(13): 3784-3788. doi:10.1093/nar/gkg563
- 34La Verde V, Dominici P, Astegno A. Determination of hydrodynamic radius of proteins by size exclusion chromatography. Bio Protoc. 2017; 7(8):e2230. doi:10.21769/BioProtoc.2230
- 35Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13): 1605-1612. doi:10.1002/jcc.20084
- 36Santelli E, Schwarzenbacher R, McMullan D, et al. Crystal structure of a glycerophosphodiester phosphodiesterase (GDPD) from Thermotoga maritima (TM1621) at 1.60 a resolution. Proteins. 2004; 56(1): 167-170. doi:10.1002/prot.20120
- 37Shi L, Liu JF, An XM, Liang DC. Crystal structure of glycerophosphodiester phosphodiesterase (GDPD) from Thermoanaerobacter tengcongensis, a metal ion-dependent enzyme: insight into the catalytic mechanism. Proteins. 2008; 72(1): 280-288. doi:10.1002/prot.21921
- 38Liebschner D, Afonine PV, Moriarty NW, et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr D Struct Biol. 2017; 73(Pt 2): 148-157. doi:10.1107/S2059798316018210
- 39Holm L. Dali server: structural unification of protein families. Nucleic Acids Res. 2022; 50: W210-W215. doi:10.1093/nar/gkac387
- 40Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE. Tools for integrated sequence-structure analysis with UCSF chimera. BMC Bioinform. 2006; 7: 339. doi:10.1186/1471-2105-7-339
- 41Barth M, Schmidt C. Native mass spectrometry-a valuable tool in structural biology. J Mass Spectrom. 2020; 55(10):e4578. doi:10.1002/jms.4578
- 42Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008; 5(11): 927-933. doi:10.1038/nmeth.1265
- 43Mallis CS, Zheng X, Qiu X, et al. Development of native MS capabilities on an extended mass range Q-TOF MS. Int J Mass Spectrom. 2020; 458: 116451. doi:10.1016/j.ijms.2020.116451