Antimicrobial activity and structure of a consensus human β-defensin and its comparison to a novel putative hBD10
Alexis Rodriguez
Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
Search for more papers by this authorElba Villegas
Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
Search for more papers by this authorBruno Rivas-Santiago
Medical Research Unit-Zacatecas, Mexican Institute of Social Security IMSS, Zacatecas, Mexico
Search for more papers by this authorJessica Villegas-Moreno
Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
Search for more papers by this authorCarlos Amero
Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
Search for more papers by this authorRaymond S. Norton
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
Search for more papers by this authorCorresponding Author
Gerardo Corzo
Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
Correspondence
Gerardo Corzo, Institute of Biotechnology-UNAM, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico.
Email: [email protected]
Search for more papers by this authorAlexis Rodriguez
Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
Search for more papers by this authorElba Villegas
Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
Search for more papers by this authorBruno Rivas-Santiago
Medical Research Unit-Zacatecas, Mexican Institute of Social Security IMSS, Zacatecas, Mexico
Search for more papers by this authorJessica Villegas-Moreno
Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
Search for more papers by this authorCarlos Amero
Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
Search for more papers by this authorRaymond S. Norton
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
Search for more papers by this authorCorresponding Author
Gerardo Corzo
Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
Correspondence
Gerardo Corzo, Institute of Biotechnology-UNAM, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico.
Email: [email protected]
Search for more papers by this authorFunding information Australian National Health and Medical Research Council; Dirección General de Asuntos del Personal Académico (DGAPA-UNAM), Grant/Award Number: IN203118
Abstract
The spread of multidrug resistant bacteria owing to the intensive use of antibiotics is challenging current antibiotic therapies, and making the discovery and evaluation of new antimicrobial agents a high priority. The evaluation of novel peptide sequences of predicted antimicrobial peptides from different sources is valuable approach to identify alternative antibiotic leads. Two strategies were pursued in this study to evaluate novel antimicrobial peptides from the human β-defensin family (hBD). In the first, a 32-residue peptide was designed based on the alignment of all available hBD primary structures, while in the second a putative 35-residue peptide, hBD10, was mined from the gene DEFB110. Both hBDconsensus and hBD10 were chemically synthesized, folded and purified. They showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Mycobacterium tuberculosis, but were not hemolytic on human red blood cells. The NMR-based solution structure of hBDconsensus revealed that it adopts a classical β-defensin fold and disulfide connectivities. Even though the mass spectrum of hBD10 confirmed the formation of three disulfide bonds, it showed limited dispersion in 1H NMR spectra and structural studies were not pursued. The evaluation of different β-defensin structures may identify new antimicrobial agents effective against multidrug-resistant bacterial strains.
Supporting Information
Filename | Description |
---|---|
prot25785-sup-0001-FigureS1.tifTIFF image, 2.6 MB | Figure S1 Supporting Information |
prot25785-sup-0002-FigureS2A.tifTIFF image, 3 MB | Figure S2A Supporting Information |
prot25785-sup-0003-FigureS2B.tifTIFF image, 2.9 MB | Figure S2B Supporting Information |
prot25785-sup-0004-FigureS2C.tifTIFF image, 2.9 MB | Figure S2C Supporting Information |
prot25785-sup-0005-FigureS2D.tifTIFF image, 2.9 MB | Figure S2D Supporting Information |
prot25785-sup-0006-FigureS3.tifTIFF image, 3.6 MB | Figure S3 Supporting Information |
prot25785-sup-0007-FigureS4.tifTIFF image, 156.5 KB | Figure S4 Supporting Information |
prot25785-sup-0008-FigureS5.tifTIFF image, 9.5 MB | Figure S5 Supporting Information |
prot25785-sup-0009-FigureS6.tifTIFF image, 11.7 MB | Figure S6 Supporting Information |
prot25785-sup-0010-TableS1.docxWord 2007 document , 96.7 KB | Table S1 Information on hBDs deposited in the UniProt database. |
prot25785-sup-0011-TableS2.docxWord 2007 document , 116.7 KB | Table S2 DEFB110 orthologous genes in mammals |
prot25785-sup-0012-TableS3.docxWord 2007 document , 82.9 KB | Table S3 Experimental molecular masses for unfolded and folded fractions of either hBD10 or hBDconsensus. |
prot25785-sup-0013-TableS4.docxWord 2007 document , 51.5 KB | Table S4 1D 1H NMR experiments parameters. |
prot25785-sup-0014-TableS5.docxWord 2007 document , 112.7 KB | Table S5 Chemical shift values (ppm) for 1H and 15N resonances. BioMagResBank1 ID 30520. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010; 74(3): 417-433.
- 2Furusawa C, Horinouchi T, Maeda T. Toward prediction and control of antibiotic-resistance evolution. Curr Opin Biotechnol. 2018; 54: 45-49.
- 3Shlaes DM, Bradford PA. Antibiotics—from there to where? Pathog Immun. 2018; 3(1): 19-43.
- 4Watkins RR, Bonomo RA. Overview: global and local impact of antibiotic resistance. Infect Dis Clin. 2016; 30(2): 313-322.
- 5Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018; 18(3): 318-327.
- 6 WHO. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections Including Tuberculosis. Geneva: World Health Organization; 2017: 87.
- 7Mishra B, Reiling S, Zarena D, Wang G. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol. 2017; 38: 87-96.
- 8Tucker AT, Leonard SP, DuBois CD, et al. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries. Cell. 2018; 172(3): 618-628.
- 9Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals. 2014; 7(5): 545-594.
- 10Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. Human antimicrobial peptides in bodily fluids: current knowledge and therapeutic perspectives in the postantibiotic era. Med Res Rev. 2018; 38(1): 101-146.
- 11Jin G, Weinberg A. Human antimicrobial peptides and cancer. Seminars in Cell & Developmental Biology. Vol 88. Gangtok, India: Academic Press; 2018, May: 156-162. https://doi.org/10.1016/j.semcdb.2018.04.006.
- 12Lehrer RI. Primate defensins. Nat Rev Microbiol. 2004; 2(9): 727-738.
- 13Pazgier M, Li X, Lu W, Lubkowski J. Human defensins: synthesis and structural properties. Curr Pharm Design. 2007; 13(30): 3096-3118.
- 14Tu J, Li D, Li Q, et al. Molecular evolutionary analysis of β-defensin peptides in vertebrates. Evol Bioinform. 2015; 11: 105-114. EBO-S25580.
- 15Valore EV, Park CH, Quayle AJ, Wiles KR, McCray PB, Ganz T. Human β-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest. 1998; 101(8): 1633-1642.
- 16Fellermann K, Stange EF. Defensins–innate immunity at the epithelial frontier. Eur J Gastroenterol Hepatol. 2001; 13(7): 771-776.
- 17Lehmann J, Retz M, Harder J, et al. Expression of human β-defensins 1 and 2 in kidneys with chronic bacterial infection. BMC Infect Dis. 2002; 2(1): 20.
- 18Nitschke M, Wiehl S, Baer PC, Kreft B. Bactericidal activity of renal tubular cells: the putative role of human β-defensins. Nephron Exp Nephrol. 2002; 10(5–6): 332-337.
- 19Premratanachai P, Joly S, Johnson GK, McCray PB Jr, Jia HP, Guthmiller JM. Expression and regulation of novel human β-defensins in gingival keratinocytes. Oral Microbiol Immunol. 2004; 19(2): 111-117.
- 20Joly S, Organ CC, Johnson GK, McCray PB Jr, Guthmiller JM. Correlation between β-defensin expression and induction profiles in gingival keratinocytes. Mol Immunol. 2005; 42(9): 1073-1084.
- 21Winter J, Wenghoefer M. Human defensins: potential tools for clinical applications. Polymers. 2012; 4(1): 691-709.
- 22Suarez-Carmona M, Hubert P, Delvenne P, Herfs M. Defensins:“simple” antimicrobial peptides or broad-spectrum molecules? Cytokine Growth Factor Rev. 2015; 26(3): 361-370.
- 23Schutte BC, Mitros JP, Bartlett JA, et al. Discovery of five conserved β-defensin gene clusters using a computational search strategy. Proc Natl Acad Sci U S A. 2002; 99(4): 2129-2133.
- 24Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J. Human β-defensins. Cell Mol Life Sci. 2006; 63(11): 1294-1313.
- 25Corrales-Garcia L, Ortiz E, Castañeda-Delgado J, Rivas-Santiago B, Corzo G. Bacterial expression and antibiotic activities of recombinant variants of human β-defensins on pathogenic bacteria and M. tuberculosis. Protein Expr Purif. 2013; 89(1): 33-43.
- 26Rodríguez A, Villegas E, Montoya-Rosales A, Rivas-Santiago B, Corzo G. Characterization of antibacterial and hemolytic activity of synthetic pandinin 2 variants and their inhibition against Mycobacterium tuberculosis. PloS One. 2014; 9(7):e101742.
- 27Lehrer RI, Rosenman M, Harwig SS, Jackson R, Eisenhauer P. Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Methods. 1991; 137(2): 167-173.
- 28Corzo G, Escoubas P, Villegas E, et al. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. Biochem J. 2001; 359(1): 35-45.
- 29Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax AD. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995; 6(3): 277-293.
- 30Keller R. The Computer Aided Resonance Assignment Tutorial. Goldau: ANTINA VERLAG; 2004: 71.
- 31Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR. 2009; 44(4): 213-223.
- 32Schwieters CD, Kuszewski JJ, Clore GM. Using Xplor–NIH for NMR molecular structure determination. Prog Nucl Magn Reson Spectrosc. 2006; 48(1): 47-62.
- 33Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993; 26(2): 283-291.
- 34Patil AA, Cai Y, Sang Y, Blecha F, Zhang G. Cross-species analysis of the mammalian β-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiol Genomics. 2005; 23(1): 5-17.
- 35Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook. Totowa, NJ: Humana Press; 2005: 571-607.
10.1385/1-59259-890-0:571 Google Scholar
- 36Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 2015; 44(D1): D1094-D1097.
- 37Bryan MS, Argos M, Pierce B, et al. Genome-wide association studies and heritability estimates of body mass index related phenotypes in Bangladeshi adults. PloS One. 2014; 9(8):e105062.
- 38Mak P, Wojcik K, Thogersen IB, Dubin A. Isolation, antimicrobial activities, and primary structures of hamster neutrophil defensins. Infect Immun. 1996; 64(11): 4444-4449.
- 39Selsted ME, Szklarek D, Lehrer RI. Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect Immun. 1984; 45(1): 150-154.
- 40Yamaguchi Y, Nagase T, Makita R, et al. Identification of multiple novel epididymis-specific β-defensin isoforms in humans and mice. J Immunol. 2002; 169(5): 2516-2523.
- 41Bauer F, Schweimer K, Klüver E, et al. Structure determination of human and murine β-defensins reveals structural conservation in the absence of significant sequence similarity. Protein Sci. 2001; 10(12): 2470-2479.
- 42Huang L, Leong SSJ, Jiang R. Soluble fusion expression and characterization of bioactive human β-defensin 26 and 27. Appl Microbiol Biotechnol. 2009; 84(2): 301-308.
- 43Sang Y, Ortega MT, Blecha F, Prakash O, Melgarejo T. Molecular cloning and characterization of three β-defensins from canine testes. Infect Immun. 2005; 73(5): 2611-2620.
- 44Schulz A, Klüver E, Schulz-Maronde S, Adermann K. Engineering disulfide bonds of the novel human β-defensins hBD-27 and hBD-28: differences in disulfide formation and biological activity among human β-defensins. Pept Sci. 2005; 80(1): 34-49.
- 45Chattopadhyay S, Sinha NK, Banerjee S, Roy D, Chattopadhyay D, Roy S. Small cationic protein from a marine turtle has β-defensin-like fold and antibacterial and antiviral activity. Proteins: Struct Funct Bioinf. 2006; 64(2): 524-531.
- 46Liu H, Yu H, Xin A, et al. Production and characterization of recombinant human β-defensin DEFB120. J Pept Sci. 2014; 20(4): 251-257.
- 47Li W, Cowley A, Uludag M, et al. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015; 43(W1): W580-W584.
- 48Hoover DM, Wu Z, Tucker K, Lu W, Lubkowski J. Antimicrobial characterization of human β-defensin 3 derivatives. Antimicrob Agents Chemother. 2003; 47(9): 2804-2809.
- 49Sharma H, Nagaraj R. Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity. PloS One. 2015; 10(3):e0119525.
- 50Taylor K, Barran PE, Dorin JR. Structure–activity relationships in β-defensin peptides. Pept Sci. 2008; 90(1): 1-7.
- 51Wu Z, Hoover DM, Yang D, et al. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β-defensin 3. Proc Natl Acad Sci U S A. 2003; 100(15): 8880-8885.
- 52Mattar EH, Almehdar HA, Yacoub HA, Uversky VN, Redwan EM. Antimicrobial potentials and structural disorder of human and animal defensins. Cytokine Growth Factor Rev. 2016; 28: 95-111.
- 53Klüver E, Schulz-Maronde S, Scheid S, Meyer B, Forssmann WG, Adermann K. Structure−activity relation of human β-Defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry. 2005; 44(28): 9804-9816.
- 54Zhang ZY, Zhang HM, Li DS, Xiong TY, Fang SG. Characterization of the β-defensin genes in giant panda. Sci Rep. 2018; 8(1): 12308.
- 55Hoover DM, Chertov O, Lubkowski J. The structure of human β-defensin-1 new insights into structural properties of β-defensins. J Biol Chem. 2001; 276(42): 39021-39026.
- 56Schibli DJ, Hunter HN, Aseyev V, et al. The solution structures of the human β-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J Biol Chem. 2002; 277(10): 8279-8289.
- 57Hoover DM, Rajashankar KR, Blumenthal R, et al. The structure of human β-defensin-2 shows evidence of higher order oligomerization. J Biol Chem. 2000; 275(42): 32911-32918.
- 58Järvå M, Phan TK, Lay FT, Caria S, Kvansakul M, Hulett MD. Human β-defensin 2 kills Candida albicans through phosphatidylinositol 4, 5-bisphosphate–mediated membrane permeabilization. Sci Adv. 2018; 4(7):eaat0979.
- 59Prahl A, Pazgier M, Alexandratos J, Lubkowski J. Human β-defensin 4-defensin without the “twist”. Postepy Biochem. 2016; 62(3): 349-361.
- 60De Paula VS, Gomes NSF, Lima LG, et al. Structural basis for the interaction of human β-defensin 6 and its putative chemokine receptor CCR2 and breast cancer microvesicles. J Mol Biol. 2013; 425(22): 4479-4495.
- 61Berman H, Henrick K, Nakamura H, Markley JL. The worldwide protein data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucl Acids Res. 2006; 35(suppl_1): D301-D303.
- 62Ulrich EL, Akutsu H, Doreleijers JF, et al. BioMagResBank. Nucleic Acids Res. 2007; 36(suppl_1): D402-D408.
- 63Li T, Guo F, Wang Q, et al. N-terminus three residues deletion mutant of human β-defensin 3 with remarkably enhanced salt-resistance. PloS One. 2015; 10(2):e0117913.
- 64Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 2009; 8(12): 982-1001.
- 65Zhao Y, Chen Z, Cao Z, Li W, Wu Y. Defensins, a novel type of animal toxin-like potassium channel inhibitor. Toxicon. 2019; 167: 101-105.
- 66Yang W, Feng J, Xiang F, et al. Endogenous animal toxin-like human β-defensin 2 inhibits own K+ channels through interaction with channel extracellular pore region. Cell Mol Life Sci. 2015; 72(4): 845-853.
- 67Feng J, Xie Z, Yang W, et al. Human beta-defensin 1, a new animal toxin-like blocker of potassium channel. Toxicon. 2016; 113: 1-6.
- 68Zhao Y, Xie Z, Feng J, Li W, Cao Z, Wu Y. Pharmacological characterization of human beta-defensins 3 and 4 on potassium channels: evidence of diversity in beta-defensin-potassium channel interactions. Peptides. 2018; 108: 14-18.
- 69Gutsmann T. Interaction between antimicrobial peptides and mycobacteria. Biochim Biophys Acta Biomembr. 2016; 1858(5): 1034-1043.
- 70Silva JP, Appelberg R, Gama FM. Antimicrobial peptides as novel anti-tuberculosis therapeutics. Biotechnol Adv. 2016; 34(5): 924-940.
- 71AlMatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol Res. 2018; 128(2018): 288-305.
- 72Fattorini L, Gennaro R, Zanetti M, et al. In vitro activity of protegrin-1 and β-defensin-1, alone and in combination with isoniazid, against Mycobacterium tuberculosis. Peptides. 2004; 25(7): 1075-1077.
- 73Sharma R, Saikia UN, Sharma S, Verma I. Activity of human β defensin-1 and its motif against active and dormant Mycobacterium tuberculosis. Appl Microbiol Biotechnol. 2017; 101(19): 7239-7248.
- 74Harder J, Bartels J, Christophers E, Schröder JM. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2001; 276(8): 5707-5713.
- 75Rastogi N, Labrousse V, Goh KS. In vitro activities of fourteen antimicrobial agents against drug susceptible and resistant clinical isolates of Mycobacterium tuberculosis and comparative intracellular activities against the virulent H37Rv strain in human macrophages. Curr Microbiol. 1996; 33(3): 167-175.
- 76Mohan T, Mitra D, Rao DN. Comparative in-vitro functional analysis of synthetic defensins and their corresponding peptide variants against HIV-1NL4. 3, E. coli, S. aureus and P. aeruginosa. Int J Pept Res Ther. 2013; 19(3): 245-255.