The 3A6-TCR/superagonist/HLA-DR2a complex shows similar interface and reduced flexibility compared to the complex with self-peptide
Ilaria Salutari
Department of Biochemistry, University of Zürich, Zürich, Switzerland
Search for more papers by this authorRoland Martin
Department of Neurology, University Hospital Zürich, Zürich, Switzerland
Search for more papers by this authorCorresponding Author
Amedeo Caflisch
Department of Biochemistry, University of Zürich, Zürich, Switzerland
Correspondence
Amedeo Caflisch, Department of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland.
Email: [email protected]
Search for more papers by this authorIlaria Salutari
Department of Biochemistry, University of Zürich, Zürich, Switzerland
Search for more papers by this authorRoland Martin
Department of Neurology, University Hospital Zürich, Zürich, Switzerland
Search for more papers by this authorCorresponding Author
Amedeo Caflisch
Department of Biochemistry, University of Zürich, Zürich, Switzerland
Correspondence
Amedeo Caflisch, Department of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland.
Email: [email protected]
Search for more papers by this authorFunding information Swiss National Science Foundation
Abstract
T-cell receptor (TCR) recognition of the myelin basic protein (MBP) peptide presented by major histocompatibility complex (MHC) protein HLA-DR2a, one of the MHC class II alleles associated with multiple sclerosis, is highly variable. Interactions in the trimolecular complex between the TCR of the MBP83-99-specific T cell clone 3A6 with the MBP-peptide/HLA-DR2a (abbreviated TCR/pMHC) lead to substantially different proliferative responses when comparing the wild-type decapeptide MBP90-99 and a superagonist peptide, which differs mainly in the residues that point toward the TCR. Here, we investigate the influence of the peptide sequence on the interface and intrinsic plasticity of the TCR/pMHC trimolecular and pMHC bimolecular complexes by molecular dynamics simulations. The intermolecular contacts at the TCR/pMHC interface are similar for the complexes with the superagonist and the MBP self-peptide. The orientation angle between TCR and pMHC fluctuates less in the complex with the superagonist peptide. Thus, the higher structural stability of the TCR/pMHC tripartite complex with the superagonist peptide, rather than a major difference in binding mode with respect to the self-peptide, seems to be responsible for the stronger proliferative response.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest with the contents of this article.
Supporting Information
Filename | Description |
---|---|
prot25764-sup-0001-AppendixS1.pdfPDF document, 3.8 MB | Appendix S1. Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Sloan-Lancaster J, Allen PM. Altered peptide ligand–induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu Rev Immunol. 1996; 14(1): 1-27. https://doi.org/10.1146/annurev.immunol.14.1.1.
- 2Degano M, Garcia KC, Apostolopoulos V, Rudolph MG, Teyton L, Wilson IA. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity. 2000; 12(3): 251-261. https://doi.org/10.1016/S1074-7613(00)80178-8.
- 3Planas R, Metz I, Ortiz Y, et al. Central role of Th2/Tc2 lymphocytes in pattern II multiple sclerosis lesions. Annals Clin Transl Neurol. 2015; 2(9): 875-893. https://doi.org/10.1002/acn3.218.
- 4Vergelli M, Hemmer B, Utz U, et al. Differential activation of human autoreactive T cell clones by altered peptide ligands derived from myelin basic protein peptide (87–99). Eur J Immunol. 1996; 26(11): 2624-2634. https://doi.org/10.1002/eji.1830261113.
- 5Quandt JA, Huh J, Baig M, et al. Myelin basic protein-specific TCR/HLA-DRB5*01:01 transgenic mice support the etiologic role of DRB5*01:01 in multiple sclerosis. J Immunol (Baltimore, MD: 1950). 2012; 189(6): 2897-2908. https://doi.org/10.4049/jimmunol.1103087.
- 6Li Y, Huang Y, Lue J, Quandt JA, Martin R, Mariuzza RA. Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. EMBO J. 2005; 24(17): 2968-2979. https://doi.org/10.1038/sj.emboj.7600771.
- 7Hemmer B, Pinilla C, Gran B, et al. Contribution of individual amino acids within MHC molecule or antigenic peptide to TCR ligand potency. Journal of Immunology (Baltimore, MD: 1950). 2000; 164(2): 861-871. https://doi.org/10.4049/jimmunol.164.2.861.
- 8Ayres CM, Riley TP, Corcelli SA, Baker BM. Modeling sequence-dependent peptide fluctuations in immunologic recognition. J Chem Inf Model. 2017b; 57(8): 1990-1998. https://doi.org/10.1021/acs.jcim.7b00118.
- 9Fodor J, Riley BT, Borg NA, Buckle AM. Previously hidden dynamics at the TCR–peptide–MHC interface revealed. J Immunol. 2018; 200(12): 4134-4145. https://doi.org/10.4049/JIMMUNOL.1800315.
- 10Knapp B, Dunbar J, Deane CM. Large scale characterization of the LC13 TCR and HLA-B8 structural landscape in reaction to 172 altered peptide ligands: a molecular dynamics simulation study. PLoS Comput Biol. 2014; 10(8):e1003748. https://doi.org/10.1371/journal.pcbi.1003748.
- 11Kumar A, Cocco E, Atzori L, Marrosu MG, Pieroni E. Structural and dynamical insights on HLA-DR2 complexes that confer susceptibility to multiple sclerosis in Sardinia: a molecular dynamics simulation study. PLoS One. 2013; 8(3):e59711. https://doi.org/10.1371/journal.pone.0059711.
- 12Narzi D, Becker CM, Fiorillo MT, Uchanska-Ziegler B, Ziegler A, Böckmann RA. Dynamical characterization of two differentially disease associated MHC class I proteins in complex with viral and self-peptides. J Mol Biol. 2012; 415(2): 429-442. https://doi.org/10.1016/J.JMB.2011.11.021.
- 13Wieczorek M, Abualrous ET, Sticht J, et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front Immunol. 2017; 8: 292. https://doi.org/10.3389/fimmu.2017.00292.
- 14Reboul CF, Meyer GR, Porebski BT, Borg NA, Buckle AM. Epitope flexibility and dynamic footprint revealed by molecular dynamics of a pMHC-TCR complex. PLoS Comput Biol. 2012; 8(3):e1002404. https://doi.org/10.1371/journal.pcbi.1002404.
- 15Zhang H, Lim H-S, Knapp B, et al. The contribution of major histocompatibility complex contacts to the affinity and kinetics of T cell receptor binding. Sci Rep. 2016; 6(1): 35326. https://doi.org/10.1038/srep35326.
- 16Kass I, Buckle AM, Borg NA. Understanding the structural dynamics of TCR-pMHC interactions. Trends Immunol. 2014; 35(12): 604-612. https://doi.org/10.1016/J.IT.2014.10.005.
- 17Knapp B, Demharter S, Esmaielbeiki R, Deane CM. Current status and future challenges in T-cell receptor/peptide/MHC molecular dynamics simulations. Brief Bioinform. 2015; 16(6): 1035-1044. https://doi.org/10.1093/bib/bbv005.
- 18Fiser A, Do RKG, Šali A. Modeling of loops in protein structures. Protein Sci. 2000; 9(9): 1753-1773. https://doi.org/10.1110/ps.9.9.1753.
- 19Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis. 1997; 18(15): 2714-2723. https://doi.org/10.1002/elps.1150181505.
- 20Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
- 21Abraham, M. J., van der Spoel, D., Lindahl, E., Hess, B., and The GROMACS Development Team. (2017). GROMACS User Manual Version 2016.3, available at: www.gromacs.org.
- 22Jo S, Cheng X, Islam SM, et al. CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues. Adv Protein Chem Struct Biol. 2014; 96: 235-265. https://doi.org/10.1016/BS.APCSB.2014.06.002.
- 23Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 2008; 29(11): 1859-1865. https://doi.org/10.1002/jcc.20945.
- 24Best RB, Zhu X, Shim J, et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput. 2012; 8(9): 3257-3273. https://doi.org/10.1021/ct300400x.
- 25Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. J Mol Graph, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
- 26Boniface JJ, Reich Z, Lyons DS, Davis MM. Thermodynamics of T cell receptor binding to peptide-MHC: evidence for a general mechanism of molecular scanning. Proc Natl Acad Sci USA. 1999; 96(20): 11446-11451. https://doi.org/10.1073/PNAS.96.20.11446.
- 27Davis SJ, Ikemizu S, Evans EJ, Fugger L, Bakker TR, van der Merwe PA. The nature of molecular recognition by T cells. Nat Immunol. 2003; 4(3): 217-224. https://doi.org/10.1038/ni0303-217.
- 28Stone JD, Chervin AS, Kranz DM. T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology. 2009; 126(2): 165-176. https://doi.org/10.1111/j.1365-2567.2008.03015.x.
- 29Carven GJ, Chitta S, Hilgert I, et al. Monoclonal antibodies specific for the empty conformation of HLA-DR1 reveal aspects of the conformational change associated with peptide binding. J Biol Chem. 2004; 279(16): 16561-16570. https://doi.org/10.1074/jbc.M314315200.
- 30Hansen TH, Lybarger L, Yu L, Mitaksov V, Fremont DH. Recognition of open conformers of classical MHC by chaperones and monoclonal antibodies. Immunol Rev. 2005; 207(1): 100-111. https://doi.org/10.1111/j.0105-2896.2005.00315.x.
- 31Simon, Á., Dosztányi, Z., Rajnavölgyi, É., & Simon, I. (2000). Function-related regulation of the stability of MHC proteins. Biophys J, 79(5), 2305–2313. https://doi.org/10.1016/S0006-3495(00)76476-9
- 32Li Y, Li H, Martin R, Mariuzza RA. Structural basis for the binding of an immunodominant peptide from myelin basic protein in different registers by two HLA-DR2 proteins. J Mol Biol. 2000; 304(2): 177-188. https://doi.org/10.1006/jmbi.2000.4198.
- 33Painter CA, Negroni MP, Kellersberger KA, Zavala-Ruiz Z, Evans JE, Stern LJ. Conformational lability in the class II MHC 310 helix and adjacent extended strand dictate HLA-DM susceptibility and peptide exchange. Proc Natl Acad Sci. 2011; 108(48): 19329-19334. https://doi.org/10.1073/PNAS.1108074108.
- 34Rupp B, Günther S, Makhmoor T, et al. Characterization of structural features controlling the receptiveness of empty class II MHC molecules. PLoS One. 2011; 6(4):e18662. https://doi.org/10.1371/journal.pone.0018662.
- 35Sloan VS, Cameron P, Porter G, et al. Mediation by HLA-DM of dissociation of peptides from HLA-DR. Nature. 1995; 375(6534): 802-806. https://doi.org/10.1038/375802a0.
- 36Yin L, Trenh P, Guce A, et al. Susceptibility to HLA-DM protein is determined by a dynamic conformation of major histocompatibility complex class II molecule bound with peptide. J Biol Chem. 2014; 289(34): 23449-23464. https://doi.org/10.1074/jbc.M114.585539.
- 37Ely LK, Beddoe T, Clements CS, et al. Disparate thermodynamics governing T cell receptor-MHC-I interactions implicate extrinsic factors in guiding MHC restriction. Proc Natl Acad Sci USA. 2006; 103(17): 6641-6646. https://doi.org/10.1073/pnas.0600743103.
- 38Miller PJ, Pazy Y, Conti B, Riddle D, Appella E, Collins EJ. Single MHC mutation eliminates enthalpy associated with T cell receptor binding. J Mol Biol. 2007; 373(2): 315-327. https://doi.org/10.1016/j.jmb.2007.07.028.
- 39Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006; 24(1): 419-466. https://doi.org/10.1146/annurev.immunol.23.021704.115658.
- 40Armstrong KM, Insaidoo FK, Baker BM. Thermodynamics of T-cell receptor-peptide/MHC interactions: progress and opportunities. J Mol Recogn. 2008; 21(4): 275-287. https://doi.org/10.1002/jmr.896.
- 41Davis-Harrison RL, Armstrong KM, Baker BM. Two different T cell receptors use different thermodynamic strategies to recognize the same peptide/MHC ligand. J Mol Biol. 2005; 346(2): 533-550. https://doi.org/10.1016/J.JMB.2004.11.063.
- 42Ayres CM, Scott DR, Corcelli SA, Baker BM. Differential utilization of binding loop flexibility in T cell receptor ligand selection and cross-reactivity. Sci Rep. 2016; 6(1): 25070. https://doi.org/10.1038/srep25070.
- 43Mazza C, Auphan-Anezin N, Gregoire C, et al. How much can a T-cell antigen receptor adapt to structurally distinct antigenic peptides? EMBO J. 2007; 26(7): 1972-1983. https://doi.org/10.1038/sj.emboj.7601605.
- 44Scott DR, Borbulevych OY, Piepenbrink KH, Corcelli SA, Baker BM. Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity, specificity, and binding mechanism. J Mol Biol. 2011; 414(3): 385-400. https://doi.org/10.1016/J.JMB.2011.10.006.
- 45Ayres CM, Corcelli SA, Baker BM. Peptide and peptide-dependent motions in MHC proteins: immunological implications and biophysical underpinnings. Front Immunol. 2017a; 8: 935. https://doi.org/10.3389/fimmu.2017.00935.
- 46Borbulevych OY, Piepenbrink KH, Gloor BE, et al. T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide-MHC molecular flexibility. Immunity. 2009; 31(6): 885-896. https://doi.org/10.1016/J.IMMUNI.2009.11.003.
- 47Natarajan K, Jiang J, May NA, et al. The role of molecular flexibility in antigen presentation and T cell receptor-mediated signaling. Front Immunol. 2018; 9: 1657. https://doi.org/10.3389/fimmu.2018.01657.
- 48Insaidoo FK, Borbulevych OY, Hossain M, Santhanagopolan SM, Baxter TK, Baker BM. Loss of T cell antigen recognition arising from changes in peptide and major histocompatibility complex protein flexibility: implications for vaccine design. J Biol Chem. 2011; 286(46): 40163-40173. https://doi.org/10.1074/jbc.M111.283564.
- 49McFarland BJ, Beeson C. Binding interactions between peptides and proteins of the class II major histocompatibility complex. Med Res Rev. 2002; 22(2): 168-203.
- 50Vogt AB, Kropshofer H, Kalbacher H, et al. Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. J Immunol (Baltimore, MD: 1950). 1994; 153(4): 1665-1673.
- 51Wucherpfennig KW, Sette A, Southwood S, et al. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp Med. 1994; 179(1): 279-290. https://doi.org/10.1084/jem.179.1.279.
- 52Khan JM, Ranganathan S. Understanding TR binding to pMHC complexes: how does a TR scan many pMHC complexes yet preferentially bind to one. PLoS ONE. 2011; 6(2):e17194. https://doi.org/10.1371/journal.pone.0017194.
- 53Rudolph MG, Luz JG, Wilson IA. Structural and thermodynamic correlates of T cell signaling. Annu Rev Biophys Biomol Struct. 2002; 31(1): 121-149. https://doi.org/10.1146/annurev.biophys.31.082901.134423.
- 54Hahn M, Nicholson MJ, Pyrdol J, Wucherpfennig KW. Unconventional topology of self peptide–major histocompatibility complex binding by a human autoimmune T cell receptor. Nat Immunol. 2005; 6(5): 490-496. https://doi.org/10.1038/ni1187.
- 55Cole D. Increased peptide contacts govern high affinity binding of a modified TCR whilst maintaining a native pMHC docking mode. Front Immunol. 2013; 4: 168. https://doi.org/10.3389/fimmu.2013.00168.
- 56Ding, Y.-H., Baker, B. M., Garboczi, D. N., Biddison, W. E., & Wiley, D. C. (1999). Four A6-TCR/peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity, 11(1), 45–56. https://doi.org/10.1016/S1074-7613(00)80080-1
- 57Bécart S, Setterblad N, Ostrand-Rosenberg S, Ono SJ, Charron D, Mooney N. Intracytoplasmic domains of MHC class II molecules are essential for lipid-raft-dependent signaling. J Cell Sci. 2003; 116(Pt 12): 2565-2575. https://doi.org/10.1242/jcs.00449.
- 58Harton, J. A., Van Hagen, A. E., & Bishop, G. A. (1995). The cytoplasmic and transmembrane domains of MHC class II β chains deliver distinct signals required for MHC class II-mediated B cell activation. Immunity, 3(3), 349–358. https://doi.org/10.1016/1074-7613(95)90119-1
- 59König, R. (2002). Interactions between MHC molecules and co-receptors of the TCR. Curr Opin Immunol, 14(1), 75–83. https://doi.org/10.1016/S0952-7915(01)00300-4
- 60Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME. Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb Perspect Biol. 2010; 2(4): a005140. https://doi.org/10.1101/cshperspect.a005140.