Structural thermal adaptation of β-tubulins from the Antarctic psychrophilic protozoan Euplotes focardii
Corresponding Author
Federica Chiappori
Istituto di Tecnologie Biomediche – Consiglio Nazionale delle Ricerche, Segrate (MI), Italy
Federica Chiappori and Sandra Pucciarelli contributed equally to this work
Federica Chiappori, Istituto di Tecnologie Biomediche – Consiglio Nazionale delle Ricerche, via Fratelli Cervi, 93 20090 Segrate (MI), Italy===
Sandra Pucciarelli, Scuola di Bioscienze e Biotecnologie, University of Camerino, Camerino, Italy===
Search for more papers by this authorCorresponding Author
Sandra Pucciarelli
Scuola di Bioscienze e Biotecnologie, University of Camerino, Camerino, Italy
Federica Chiappori and Sandra Pucciarelli contributed equally to this work
Federica Chiappori, Istituto di Tecnologie Biomediche – Consiglio Nazionale delle Ricerche, via Fratelli Cervi, 93 20090 Segrate (MI), Italy===
Sandra Pucciarelli, Scuola di Bioscienze e Biotecnologie, University of Camerino, Camerino, Italy===
Search for more papers by this authorIvan Merelli
Istituto di Tecnologie Biomediche – Consiglio Nazionale delle Ricerche, Segrate (MI), Italy
Search for more papers by this authorPatrizia Ballarini
Scuola di Bioscienze e Biotecnologie, University of Camerino, Camerino, Italy
Search for more papers by this authorCristina Miceli
Scuola di Bioscienze e Biotecnologie, University of Camerino, Camerino, Italy
Search for more papers by this authorLuciano Milanesi
Istituto di Tecnologie Biomediche – Consiglio Nazionale delle Ricerche, Segrate (MI), Italy
Search for more papers by this authorCorresponding Author
Federica Chiappori
Istituto di Tecnologie Biomediche – Consiglio Nazionale delle Ricerche, Segrate (MI), Italy
Federica Chiappori and Sandra Pucciarelli contributed equally to this work
Federica Chiappori, Istituto di Tecnologie Biomediche – Consiglio Nazionale delle Ricerche, via Fratelli Cervi, 93 20090 Segrate (MI), Italy===
Sandra Pucciarelli, Scuola di Bioscienze e Biotecnologie, University of Camerino, Camerino, Italy===
Search for more papers by this authorCorresponding Author
Sandra Pucciarelli
Scuola di Bioscienze e Biotecnologie, University of Camerino, Camerino, Italy
Federica Chiappori and Sandra Pucciarelli contributed equally to this work
Federica Chiappori, Istituto di Tecnologie Biomediche – Consiglio Nazionale delle Ricerche, via Fratelli Cervi, 93 20090 Segrate (MI), Italy===
Sandra Pucciarelli, Scuola di Bioscienze e Biotecnologie, University of Camerino, Camerino, Italy===
Search for more papers by this authorIvan Merelli
Istituto di Tecnologie Biomediche – Consiglio Nazionale delle Ricerche, Segrate (MI), Italy
Search for more papers by this authorPatrizia Ballarini
Scuola di Bioscienze e Biotecnologie, University of Camerino, Camerino, Italy
Search for more papers by this authorCristina Miceli
Scuola di Bioscienze e Biotecnologie, University of Camerino, Camerino, Italy
Search for more papers by this authorLuciano Milanesi
Istituto di Tecnologie Biomediche – Consiglio Nazionale delle Ricerche, Segrate (MI), Italy
Search for more papers by this authorAbstract
Tubulin dimers of psychrophilic eukaryotes can polymerize into microtubules at 4°C, a temperature at which microtubules from mesophiles disassemble. This unique capability requires changes in the primary structure and/or in post-translational modifications of the tubulin subunits. To contribute to the understanding of mechanisms responsible for microtubule cold stability, here we present a computational structural analysis based on molecular dynamics (MD) and experimental data of three β-tubulin isotypes, named EFBT2, EFBT3, and EFBT4, from the Antarctic protozoon Euplotes focardii that optimal temperature for growth and reproduction is 4°C. In comparison to the β-tubulin from E. crassus, a mesophilic Euplotes species, EFBT2, EFBT3, and EFBT4 possess unique amino acid substitutions that confer different flexible properties of the polypeptide, as well as an increased hydrophobicity of the regions involved in microtubule interdimeric contacts that may overcome the microtubule destabilizing effect of cold temperatures. The structural analysis based on MD indicated that all isotypes display different flexibility properties in the regions involved in the formation of longitudinal and lateral contacts during microtubule polymerization. We also investigated the role of E. focardii β-tubulin isotypes during the process of cilia formation. The unique characteristics of the primary and tertiary structures of psychrophilic β-tubulin isotypes seem responsible for the formation of microtubules with distinct dynamic and functional properties. Proteins 2012;. © 2011 Wiley Periodicals, Inc.
REFERENCES
- 1 Nogales E,Downing KH,Amos LA,Löwe J. Tubulin and FtsZ form a distinct family of GTPases. Nat Struct Biol 1998; 5: 451–458.
- 2 Tran PT,Joshi P,Salmon ED. How tubulin subunits are lost from the shortening ends of microtubules. J Struct Biol 1997; 118: 107–118.
- 3 Desai A,Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997; 13: 83–117.
- 4 Buey RM,Díaz JF,Andreu JM. The nucleotide switch of tubulin and microtubule assembly: a polymerization-driven structural change. Biochemistry 2006; 45: 5933–5938.
- 5 Löwe J,Li H,Downing KH,Nogales E. Refined structure of αβ-tubulin at 3.5 Å resolution. J Mol Biol 2001; 313: 1045–1057.
- 6 Joe PA,Banerjee A,Ludueña RF. The roles of cys124 and ser239 in the functional properties of human betaIII tubulin. Cell Motil Cytoskeleton 2008; 65: 476–486.
- 7 Wallin M,Strömberg E. Cold-stable and cold-adapted microtubules. Int Rev Cytol 1995; 157: 1–31.
- 8 Detrich HW,III,Parker SK,Williams RC,Jr,Nogales E,Downing KH. Cold adaptation of microtubule assembly and dynamics. Structural interpretation of primary sequence changes present in the alpha- and beta-tubulins of Antarctic fishes. J Biol Chem 2000; 275: 37038–37047.
- 9 Valbonesi A,Luporini P. Biology of Euplotes focardii an Antarctic ciliate. Polar Biol 1990; 13: 489–493.
- 10 Pucciarelli S,Miceli C. Characterization of the cold-adapted alpha-tubulin from the psychrophilic ciliate Euplotes focardii. Extremophiles 2002; 5: 385–389.
- 11 Miceli C,Ballarini P,Di Giuseppe G,Valbonesi A,Luporini P. Identification of the tubulin gene family and sequence determination of one β-tubulin gene in a cold-poikilotherm protozoan, the Antarctic ciliate Euplotes focardii. J Eukaryot Microbiol 1994; 41: 420–427.
- 12 Pucciarelli S,La TA,Ballarini P,Barchetta S,Yu T,Marziale F,Passini V,Methé B,Detrich HW,III,Miceli C. Molecular cold-adaptation of protein function and gene regulation: the case for comparative genomic analyses in marine ciliated protozoa. Mar Genomics 2009; 2: 57–66.
- 13 Huzil JT,Ludueña RF,Tuszynski J. Comparative modeling of human β tubulin isotypes and implications for drug binding. Nanotechnology 2006; 17: S90–S100.
- 14 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685.
- 15 Bradford MM. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem 1976; 72: 248–254.
- 16 Detrich HW,III,Jordan MA,Wilson L,Williams RC,Jr. Mechanism of microtubule assembly. Changes in polymer structure and organization during assembly of sea urchin egg tubulin. J Biol Chem 1985; 260: 9479–9490.
- 17 Marziale F,Pucciarelli S,Ballarini P,Melki R,Uzun A,Ilyin VL,Detrich HW,III,Miceli C. Different roles of two γ-tubulin isotypes in the cytoskeleton of the Antarctic ciliate Euplotes focardii. FEBS J 2008; 275: 5367–5382.
- 18 Hoffman DC,Anderson RC,DuBois ML,Prescott DM. Macronuclear gene-sized molecules of hypotrichs. Nucleic Acids Res 1995; 23: 1279–83.
- 19 Sambrook J,Russel DW. Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, NY; 2001.
- 20 Eswar N,Webb B,Marti-Renom MA,Madhusudhan MS,Eramian D,Shen MY,Pieper U,Sali A. Comparative protein structure modeling with MODELLER. Curr Protoc Bioinformatics 2006, Unit 5.6.
- 21 Shen M,Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci 2006; 15: 2507–2524.
- 22 Benkert P,Tosatto SCE,Schomburg D. QMEAN: a comprehensive scoring function for model quality assessment. Proteins 2008; 71: 261–277.
- 23 Arnold K,Bordoli L,Kopp J,Schwede T. The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006; 22: 195–201.
- 24 Hess B,Kutzner C,van der Spoel D,Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Coumput 2008; 4: 435–447.
- 25 Hess B,Bekker H,Berendsen HJC,Fraaije JGEM: LINCS. A linear constraint solver for molecular simulations. J Comp Chem 1997; 18: 1463–1472.
- 26 Essman U,Perera L,Berkowitz ML,Darden T,Lee H,Pedersen LG. A smooth particle mesh ewald potential. J Chem Phys 1995; 103: 8577–8592.
- 27 Humphrey W,Dalke A,Schulten K. VMD—visual molecular dynamics. J Mol Graph 1996; 14: 33–38.
- 28 Cheung CH,Wu SY,Lee TR,Chang CY,Wu JS,Hsieh HP,Chang JY. Cancer cells acquire mitotic drug resistance properties through beta I-tubulin mutations and alterations in the expression of beta-tubulin isotypes. PLoS One 2010; 5: e12564.
- 29 Yin S,Bhattacharya R,Cabral F. Human mutations that confer paclitaxel resistance. Mol Cancer Ther 2010; 9: 327–335.
- 30 Feller G,Gerday C. Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 1997; 53: 830–841.
- 31 Metpally RPR,Reddy BVB. Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: insights into the molecular basis of cold adaptation of proteins. BMC Genomics 2009; 10: 11.
- 32 Nogales E,Wolf SG,Downing KH. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 1998; 391: 199–203.
- 33 Keskin O,Durell SR,Bahar I,Jernigan RL,Covell DG. Relating molecular flexibility to function: a case study of tubulin. Biophys J 2002; 83: 663–680.
- 34 Panda D,Miller HP,Banerjee A,Ludueña RF,Wilson L. Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc Natl Acad Sci USA 1994; 91: 11358–11362.
- 35 Richards KL,Anders KR,Nogales E,Schwartz K,Downing KH,Botstein D. Structure–function relationships in yeast tubulins. Mol Biol Cell 2000; 11: 1887–1903.
- 36 Willem S,Srahna M,Devos N,Gerday C,Loppes R,Matagne RF. Protein adaptation to low temperatures: a comparative study of alpha-tubulin sequences in mesophilic and psychrophilic algae. Extremophiles 1999; 3: 221–226.
- 37 Shang Y,Tsao CC,Gorovsky MA. Mutational analyses reveal a novel function of the nucleotide-binding domain of gamma-tubulin in the regulation of basal body biogenesis. J Cell Biol 2005; 171: 1035–1044.
- 38 Hesketh JE,Ciesielski-Treska J,Aunis D. Cold-stable microtubules and microtubule-organing centres in astrocytes in primary culture. Neurosci Lett 1984; 51: 155–160.