Conformational changes induced by ATP-hydrolysis in an ABC transporter: A molecular dynamics study of the Sav1866 exporter
A. Sofia Oliveira
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal
Search for more papers by this authorAntónio M. Baptista
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal
Search for more papers by this authorCorresponding Author
Cláudio M. Soares
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República – EAN, 2780-157 Oeiras, Portugal===Search for more papers by this authorA. Sofia Oliveira
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal
Search for more papers by this authorAntónio M. Baptista
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal
Search for more papers by this authorCorresponding Author
Cláudio M. Soares
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Portugal
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República – EAN, 2780-157 Oeiras, Portugal===Search for more papers by this authorAbstract
ATP-Binding Cassette (ABC) transporters are ubiquitous membrane proteins that use energy from ATP binding or/and hydrolysis to actively transport allocrites across membranes. In this study, we identify ATP-hydrolysis induced conformational changes in a complete ABC exporter (Sav1866) from Staphylococcus aureaus, using molecular dynamics (MD) simulations. By performing MD simulations on the ATP and ADP+IP bound states, we identify the conformational consequences of hydrolysis, showing that the major rearrangements are not restricted to the NBDs, but extend to the transmembrane domains (TMDs) external regions. For the first time, to our knowledge, we see, within the context of a complete transporter, NBD dimer opening in the ADP+IP state in contrast with all ATP-bound states. This opening results from the dissociation of the ABC signature motif from the nucleotide. In addition, in both states, we observe the opening of a gate entrance in the intracellular loop region leading to the exposure of the TMDs internal cavity to the cytoplasm. To see if this opening was large enough to allow allocrite transport, the adiabatic energy profile for doxorubicin passage was determined. For both states, this profile, although an approximation, is overall downhill from the cytoplasmatic to the extracellular side, and the local energy barriers along the TMDs are relatively small, evidencing the exporter nature of Sav1866. The major difference between states is an energy barrier located in the cytoplasmic gate region, which becomes reduced upon hydrolysis, suggesting that allocrite passage is facilitated, and evidencing a possible molecular mechanism for the active transport in these proteins. Proteins 2011; © 2011 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_23023_sm_suppinfomov1.mov111.1 KB | Supporting Information Movie 1 |
PROT_23023_sm_suppinfomov2.mov56.9 KB | Supporting Information Movie 1 |
PROT_23023_sm_suppinfomov3.mov702.8 KB | Supporting Information Movie 1 |
PROT_23023_sm_suppinfo.pdf4.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Mimmack ML,Gallagher MP,Pearce SR,Hyde SC,Booth IR,Higgins CF. Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo. Proc Natl Acad Sci USA 1989; 86: 8257–8261.
- 2 Bishop L,Agbayani R,Jr,Ambudkar SV,Maloney PC,Ames GF. Reconstitution of a bacterial periplasmic permease in proteoliposomes and demonstration of ATP hydrolysis concomitant with transport. Proc Natl Acad Sci USA 1989; 86: 6953–6957.
- 3 Jones PM,George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 2004; 61: 682–699.
- 4 Davidson AL,Chen J. ATP-binding cassette transporters in bacteria. Annu Rev Biochem 2004; 73: 241–268.
- 5 Borst P,Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem 2002; 71: 537–592.
- 6 Deeley RG,Westlake C,Cole SP. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 2006; 86: 849–899.
- 7 Riordan JR,Rommens JM,Kerem B,Alon N,Rozmahel R,Grzelczak Z,Zielenski J,Lok S,Plavsic N,Chou JL. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245: 1066–1073.
- 8 Gottesman MM,Ambudkar SV. Overview: ABC transporters and human disease. J Bioenerg Biomembr 2001; 33: 453–458.
- 9 Dean M,Rzhetsky A,Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001; 11: 1156–1166.
- 10 Linton KJ,Higgins CF. The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol 1998; 28: 5–13.
- 11 Davidson AL,Maloney PC. ABC transporters: how small machines do a big job. Trends Microbiol 2007; 15: 448–455.
- 12 Saurin W,Hofnung M,Dassa E. Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol 1999; 48: 22–41.
- 13 Davidson AL,Dassa E,Orelle C,Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72: 317–364.
- 14 Higgins CF. ABC transporters: physiology, structure and mechanism--an overview. Res Microbiol 2001; 152: 205–210.
- 15 Linton KJ. Structure and function of ABC transporters. Physiology (Bethesda) 2007; 22: 122–130.
- 16 Oancea G,O'Mara ML,Bennett WF,Tieleman DP,Abele R,Tampe R. Structural arrangement of the transmission interface in the antigen ABC transport complex TAP. Proc Natl Acad Sci USA 2009; 106: 5551–5556.
- 17 Ambudkar SV,Kim IW,Xia D,Sauna ZE. The A-loop, a novel conserved aromatic acid subdomain upstream of the Walker A motif in ABC transporters, is critical for ATP binding. FEBS Lett 2006; 580: 1049–1055.
- 18 Schmitt L,Tampe R. Structure and mechanism of ABC transporters. Curr Opin Struct Biol 2002; 12: 754–760.
- 19 Kerr ID. Structure and association of ATP-binding cassette transporter nucleotide-binding domains. Biochim Biophys Acta 2002; 1561: 47–64.
- 20 Locher KP,Lee AT,Rees DC. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 2002; 296: 1091–1098.
- 21 Hvorup RN,Goetz BA,Niederer M,Hollenstein K,Perozo E,Locher KP. Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 2007; 317: 1387–1390.
- 22 Dawson RJ,Locher KP. Structure of a bacterial multidrug ABC transporter. Nature 2006; 443: 180–185.
- 23 Dawson RJ,Locher KP. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 2007; 581: 935–938.
- 24 Pinkett HW,Lee AT,Lum P,Locher KP,Rees DC. An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science 2007; 315: 373–377.
- 25 Hollenstein K,Frei DC,Locher KP. Structure of an ABC transporter in complex with its binding protein. Nature 2007; 446: 213–216.
- 26 Ward A,Reyes CL,Yu J,Roth CB,Chang G. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci USA 2007; 104: 19005–19010.
- 27 Gerber S,Comellas-Bigler M,Goetz BA,Locher KP. Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 2008; 321: 246–250.
- 28 Kadaba NS,Kaiser JT,Johnson E,Lee A,Rees DC. The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science 2008; 321: 250–253.
- 29 Aller SG,Yu J,Ward A,Weng Y,Chittaboina S,Zhuo R,Harrell PM,Trinh YT,Zhang Q,Urbatsch IL,Chang G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009; 323: 1718–1722.
- 30
Oldham ML,Khare D,Quiocho FA,Davidson AL,Chen J.
Crystal structure of a catalytic intermediate of the maltose transporter.
Nature
2007;
450:
U515–U517.
10.1038/nature06264 Google Scholar
- 31 Khare D,Oldham ML,Orelle C,Davidson AL,Chen J. Alternating access in maltose transporter mediated by rigid-body rotations. Mol Cell 2009; 33: 528–536.
- 32 Jones PM,George AM. Mechanism of ABC transporters: a molecular dynamics simulation of a well characterized nucleotide-binding subunit. Proc Natl Acad Sci USA 2002; 99: 12639–12644.
- 33 Campbell JD,Deol SS,Ashcroft FM,Kerr ID,Sansom MS. Nucleotide-dependent conformational changes in HisP: molecular dynamics simulations of an ABC transporter nucleotide-binding domain. Biophys J 2004; 87: 3703–3715.
- 34 Campbell JD,Sansom MS. Nucleotide binding to the homodimeric MJ0796 protein: a computational study of a prokaryotic ABC transporter NBD dimer. FEBS Lett 2005; 579: 4193–4199.
- 35 Oloo EO,Fung EY,Tieleman DP. The dynamics of the MgATP-driven closure of MalK, the energy-transducing subunit of the maltose ABC transporter. J Biol Chem 2006; 281: 28397–28407.
- 36 Jones PM,George AM. Nucleotide-dependent allostery within the ABC transporter ATP-binding cassette: a computational study of the MJ0796 dimer. J Biol Chem 2007; 282: 22793–22803.
- 37 Wen PC,Tajkhorshid E. Dimer opening of the nucleotide binding domains of ABC transporters after ATP hydrolysis. Biophys J 2008; 95: 5100–5110.
- 38 Newstead S,Fowler PW,Bilton P,Carpenter EP,Sadler PJ,Campopiano DJ,Sansom MS,Iwata S. Insights into how nucleotide-binding domains power ABC transport. Structure 2009; 17: 1213–1222.
- 39 Jones PM,George AM. Opening of the ADP-bound active site in the ABC transporter ATPase dimer: evidence for a constant contact, alternating sites model for the catalytic cycle. Proteins 2009; 75: 387–396.
- 40 Oliveira AS,Baptista AM,Soares CM. Insights into the molecular mechanism of an ABC transporter: conformational changes in the NBD dimer of MJ0796. J Phys Chem B 2010; 114: 5486–5496.
- 41 Tanizaki S,Feig M. Molecular dynamics simulations of large integral membrane proteins with an implicit membrane model. J Phys Chem B 2006; 110: 548–556.
- 42 Sonne J,Kandt C,Peters GH,Hansen FY,Jensen MO,Tieleman DP. Simulation of the coupling between nucleotide binding and transmembrane domains in the ATP binding cassette transporter BtuCD. Biophys J 2007; 92: 2727–2734.
- 43 Ivetac A,Campbell JD,Sansom MS. Dynamics and function in a bacterial ABC transporter: simulation studies of the BtuCDF system and its components. Biochemistry 2007; 46: 2767–2778.
- 44 Weng JW,Fan KN,Wang WN. The conformational transition pathway of ATP-binding cassette transporter MsbA revealed by atomistic simulations. J Biol Chem 2010; 285: 3053–3063.
- 45 Kandt C,Tieleman DP. Holo-BtuF stabilizes the open conformation of the vitamin B12 ABC transporter BtuCD. Proteins 2010; 78: 738–753.
- 46 Aittoniemi J,de Wet H,Ashcroft FM,Sansom MS. Asymmetric switching in a homodimeric ABC transporter: a simulation study. PLoS Comput Biol 2010; 6: e1000762.
- 47 Yuan YR,Blecker S,Martsinkevich O,Millen L,Thomas PJ,Hunt JF. The crystal structure of the MJ0796 ATP-binding cassette. Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter. J Biol Chem 2001; 276: 32313–32321.
- 48 Bashford D,Gerwert K. Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J Mol Biol 1992; 224: 473–486.
- 49
Bashford D.
An object-oriented programming suite for electrostatic effects in biological molecules. In:
Y Ishikawa, RR Oldehoeft, JVW Reynders, M Tholburn, editors.
Scientific computing in object-oriented parallel environments, Vol.
1343. Lecture Notes in Computer Science.
Berlin:
ISCOPE97, Springer;
1997. pp
233–240.
10.1007/3-540-63827-X_66 Google Scholar
- 50 Bashford D,Karplus M. pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 1990; 29: 10219–10225.
- 51 Baptista AM,Soares CM. Some theoretical and computational aspects of the inclusion of proton isomerism in the protonation equilibrium of proteins. J Phys Chem 2001; 105: 293–309.
- 52 Kandt C,Ash WL,Tieleman DP. Setting up and running molecular dynamics simulations of membrane proteins. Methods 2007; 41: 475–488.
- 53 Berendsen H,Spoel D,Drunen R. GROMACS 3.1.4. Comp Phys Commun 1995; 91: 43–56.
- 54 Lindahl E,Hess B,van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 2001; 7: 306–317.
- 55 van Gunsteren WF,Billeter SR,Eising AA,Hunenberger PH,Kruger P,Mark AE,Scott WRP,Tironi IG. Biomolecular simulation: the GROMOS96 manual and user guide. Zurich, Groninger: BIOMOS b.v.; 1996.
- 56 Scott WRP,Hünenberger PH,Tironi IG,Mark AE,Billeter SR,Fennen J,Torda AE,Huber T,Krüger P,Gunsteren WF. The GROMOS biomolecular simulation program package. J Phys Chem 1999; 103: 3596–3607.
- 57 Oostenbrink C,Villa A,Mark AE,van Gunsteren WF. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 2004; 25: 1656–1676.
- 58 Oostenbrink C,Soares TA,van der Vegt NF,van Gunsteren WF. Validation of the 53A6 GROMOS force field. Eur Biophys J 2005; 34: 273–284.
- 59 Chiu SW,Clark M,Balaji V,Subramaniam S,Scott HL,Jakobsson E. Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. Biophys J 1995; 69: 1230–1245.
- 60 Hermans J,Berendsen HJC,Vangunsteren WF,Postma JPM. A consistent empirical potential for water-protein interactions. Biopolymers 1984; 23: 1513–1518.
- 61 Berendsen H,Postma J,van Gunsteren W,Dinola A,Haak J. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81: 3684–3690.
- 62
Koyama TM,Stevens CR,Borda EJ,Grobe KJ,Cleary DA.
Characterizing the gel to liquid crystal transition in lipid-bilayer model systems.
Chem Educator
1999;
4:
12–15.
10.1007/s00897990273a Google Scholar
- 63 Chandrasekhar I,Bakowies D,Glattli A,Hunenberger P,Pereira C,Van Gunsteren WF. Molecular dynamics simulation of lipid bilayers with GROMOS96: application of surface tension. Mol Simul 2005; 31: 543–548.
- 64 Miyamoto S,Kollman PA. SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models. J Comp Chem 1992; 13: 952–962.
- 65 Hess B,Bekker H,Berendsen HJC,Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J Comp Chem 1997; 18: 1463–1472.
- 66 van Gunsteren WF,Berendsen HJC. Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angew Chem Int 1990; 29: 992–1023.
- 67 Barker JA,Watts RO. Monte-Carlo studies of dielectric properties of water-like models. Mol Phys 1973; 26: 789–792.
- 68 Tironi IG,Sperb R,Smith PE,van Gunsteren WF. A generalized reaction field method for molecular-dynamics simulations. J Chem Phys 1995; 102: 15451–15459.
- 69 Damas JMOliveira ASBaptista AMSoares CM Structural consequences of ATP hydrolysis on the ABC transporter NBD dimer: molecular dynamics studies of HlyB., submitted.
- 70 Leach AR. Molecular modeling: principles and applications. England: LONGMAN; 1996.
- 71 Frezard F,Pereira-Maia E,Quidu P,Priebe W,Garnier-Suillerot A. P-glycoprotein preferentially effluxes anthracyclines containing free basic versus charged amine. Eur J Biochem 2001; 268: 1561–1567.
- 72 Siarheyeva A,Lopez JJ,Glaubitz C. Localization of multidrug transporter substrates within model membranes. Biochemistry 2006; 45: 6203–6211.
- 73 Frisch MJ,Trucks GW,Schlegel HB,Scuseria GE,Robb MA,Cheeseman JR,MontgomeryJr,Vreven T,Kudin KN,Burant JC,Millam JM,Iyengar SS,Tomasi J,Barone V,Mennucci B,Cossi M,Scalmani G,Rega N,Petersson GA,Nakatsuji H,Hada M,Ehara M,Toyota K,Fukuda R,Hasegawa J,Ishida M,Nakajima T,Honda Y,Kitao O,Nakai H,Klene M,Li X,Knox JE,Hratchian HP,Cross JB,Bakken V,Adamo C,Jaramillo J,Gomperts R,Stratmann RE,Yazyev O,Austin AJ,Cammi R,Pomelli C,Ochterski JW,Ayala PY,Morokuma K,Voth GA,Salvador P,Dannenberg JJ,Zakrzewski VG,Dapprich S,Daniels AD,Strain MC,Farkas O,Malick DK,Rabuck AD,Raghavachari K,Foresman JB,Ortiz JV,Cui Q,Baboul AG,Clifford S,Cioslowski J,Stefanov BB,Liu G,Liashenko A,Piskorz P,Komaromi I,Martin RL,Fox DJ,Keith T,Al-Laham MA,Peng CY,Nanayakkara A,Challacombe M,Gill PMW,Johnson B,Chen W,Wong MW,Gonzalez C,Pople JA. Gaussian 03, Revision C.02. Wallingford, CT: Gaussian, Inc.; 2004.
- 74 Bayly CI,Cieplak P,Cornell WD,Kollman PA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges—the resp model. J Phys Chem 1993; 97: 10269–10280.
- 75 Morris GM,Huey R,Lindstrom W,Sanner MF,Belew RK,Goodsell DS,Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009; 30: 2785–2791.
- 76 Campbell JD,Biggin PC,Baaden M,Sansom MS. Extending the structure of an ABC transporter to atomic resolution: modeling and simulation studies of MsbA. Biochemistry 2003; 42: 3666–3673.
- 77 Haubertin DY,Madaoui H,Sanson A,Guerois R,Orlowski S. Molecular dynamics simulations of E. coli MsbA transmembrane domain: formation of a semipore structure. Biophys J 2006; 91: 2517–2531.
- 78 Mourez M,Jehanno M,Schneider E,Dassa E. In vitro interaction between components of the inner membrane complex of the maltose ABC transporter of Escherichia coli: modulation by ATP. Mol Microbiol 1998; 30: 353–363.
- 79 Wang C,Karpowich N,Hunt JF,Rance M,Palmer AG. Dynamics of ATP-binding cassette contribute to allosteric control, nucleotide binding and energy transduction in ABC transporters. J Mol Biol 2004; 342: 525–537.
- 80 Karpowich N,Martsinkevich O,Millen L,Yuan YR,Dai PL,MacVey K,Thomas PJ,Hunt JF. Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure (Camb) 2001; 9: 571–586.
- 81 Zaitseva J,Jenewein S,Oswald C,Jumpertz T,Holland IB,Schmitt L. A molecular understanding of the catalytic cycle of the nucleotide-binding domain of the ABC transporter HlyB. Biochem Soc Trans 2005; 33(Part 5): 990–995.
- 82 Smith CA,Rayment I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry 1996; 35: 5404–5417.
- 83 Smith PC,Karpowich N,Millen L,Moody JE,Rosen J,Thomas PJ,Hunt JF. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 2002; 10: 139–149.
- 84 Qu Q,Sharom FJ. FRET analysis indicates that the two ATPase active sites of the P-glycoprotein multidrug transporter are closely associated. Biochemistry 2001; 40: 1413–1422.
- 85 Sauna ZE,Kim IW,Nandigama K,Kopp S,Chiba P,Ambudkar SV. Catalytic cycle of ATP hydrolysis by P-glycoprotein: evidence for formation of the E.S reaction intermediate with ATP-gamma-S, a nonhydrolyzable analogue of ATP. Biochemistry 2007; 46: 13787–13799.
- 86 Loo TW,Bartlett MC,Clarke DM. Human P-glycoprotein is active when the two halves are clamped together in the closed conformation. Biochem Biophys Res Commun 2010; 395: 436–440.
- 87 Delano W. The pymol molecular graphics system, version 0.98. San Carlos, CA: Delano Scientific LLC; 2003.