X-ray, ESR, and quantum mechanics studies unravel a spin well in the cofactor-less urate oxidase
Laure Gabison
LCRB (UMR 8015 CNRS), Faculté de pharmacie, Université Paris Descartes, 75270 Paris Cedex 06, France
Search for more papers by this authorClaude Chopard
LCBPT (UMR 8601 CNRS), Université Paris Descartes, 75270 Paris Cedex 06, France
Search for more papers by this authorNathalie Colloc'h
CI-NAPS, (UMR 6232–UCBN–CNRS–CEA), Centre Cyceron, 14074 Caen cedex, France
Search for more papers by this authorFabienne Peyrot
LCBPT (UMR 8601 CNRS), Université Paris Descartes, 75270 Paris Cedex 06, France
Search for more papers by this authorBertrand Castro
Institut Charles Gerhardt (UMR 5253 CNRS), Université Montpellier 2, 34095 Montpellier Cedex, France
Search for more papers by this authorMohamed El Hajji
Sanofi-Aventis Recherche & Développement, 34184 Montpellier Cedex, France
Search for more papers by this authorMuhannad Altarsha
ECBT (UMR 7565 CNRS), Université Henri Poincaré, 54506 Vandoeuvre-les-Nancy, France
Search for more papers by this authorGerald Monard
ECBT (UMR 7565 CNRS), Université Henri Poincaré, 54506 Vandoeuvre-les-Nancy, France
Search for more papers by this authorMohamed Chiadmi
LCRB (UMR 8015 CNRS), Faculté de pharmacie, Université Paris Descartes, 75270 Paris Cedex 06, France
Search for more papers by this authorCorresponding Author
Thierry Prangé
LCRB (UMR 8015 CNRS), Faculté de pharmacie, Université Paris Descartes, 75270 Paris Cedex 06, France
UMR 8015 CNRS, Université Paris Descartes. 4, Av de l'Observatoire, 75270 Paris Cedex 06, France===Search for more papers by this authorLaure Gabison
LCRB (UMR 8015 CNRS), Faculté de pharmacie, Université Paris Descartes, 75270 Paris Cedex 06, France
Search for more papers by this authorClaude Chopard
LCBPT (UMR 8601 CNRS), Université Paris Descartes, 75270 Paris Cedex 06, France
Search for more papers by this authorNathalie Colloc'h
CI-NAPS, (UMR 6232–UCBN–CNRS–CEA), Centre Cyceron, 14074 Caen cedex, France
Search for more papers by this authorFabienne Peyrot
LCBPT (UMR 8601 CNRS), Université Paris Descartes, 75270 Paris Cedex 06, France
Search for more papers by this authorBertrand Castro
Institut Charles Gerhardt (UMR 5253 CNRS), Université Montpellier 2, 34095 Montpellier Cedex, France
Search for more papers by this authorMohamed El Hajji
Sanofi-Aventis Recherche & Développement, 34184 Montpellier Cedex, France
Search for more papers by this authorMuhannad Altarsha
ECBT (UMR 7565 CNRS), Université Henri Poincaré, 54506 Vandoeuvre-les-Nancy, France
Search for more papers by this authorGerald Monard
ECBT (UMR 7565 CNRS), Université Henri Poincaré, 54506 Vandoeuvre-les-Nancy, France
Search for more papers by this authorMohamed Chiadmi
LCRB (UMR 8015 CNRS), Faculté de pharmacie, Université Paris Descartes, 75270 Paris Cedex 06, France
Search for more papers by this authorCorresponding Author
Thierry Prangé
LCRB (UMR 8015 CNRS), Faculté de pharmacie, Université Paris Descartes, 75270 Paris Cedex 06, France
UMR 8015 CNRS, Université Paris Descartes. 4, Av de l'Observatoire, 75270 Paris Cedex 06, France===Search for more papers by this authorAbstract
Urate oxidase (EC 1.7.3.3 or UOX) catalyzes the conversion of uric acid using gaseous molecular oxygen to 5-hydroxyisourate and hydrogen peroxide in absence of any cofactor or transition metal. The catalytic mechanism was investigated using X-ray diffraction, electron spin resonance spectroscopy (ESR), and quantum mechanics calculations. The X-ray structure of the anaerobic enzyme–substrate complex gives credit to substrate activation before the dioxygen fixation in the peroxo hole, where incoming and outgoing reagents (dioxygen, water, and hydrogen peroxide molecules) are handled. ESR spectroscopy establishes the initial monoelectron activation of the substrate without the participation of dioxygen. In addition, both X-ray structure and quantum mechanic calculations promote a conserved base oxidative system as the main structural features in UOX that protonates/deprotonates and activate the substrate into the doublet state now able to satisfy the Wigner's spin selection rule for reaction with molecular oxygen in its triplet ground state. Proteins 2011; © 2011 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_23022_sm_suppinfo.pdf695.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Bentley R,Neuberger A. The mechanism of the action of uricase. Biochem J 1952; 52: 694–699.
- 2 Modric N,Derome AE,Ashcrofts SHJ,Poje M. Tracing and identification of uricase reaction intermediates. A direct 13C-NMR isotope-labelling evidence. Tetrahedron Lett 1992; 33: 6691–6694.
- 3 Kahn K,Serfozo P,Tipton PA. Identification of the true product of the urate oxidase reaction. J Am Chem Soc 1997; 119: 5435–5442.
- 4 Kahn K,Tipton PA. Spectroscopic characterization of intermediates in the urate oxidase reaction. Biochemistry 1998; 37: 11651–11659.
- 5 Imhoff RD,Power NP,Borrok MJ,Tipton PA. General base catalysis in the urate oxidase reaction: evidence for a novel Thr-Lys catalytic diad. Biochemistry 2003; 42: 4094–4100.
- 6 Doll C,Bell AF,Power N,Tonge PJ,Tipton PA. Procatalytic ligand strain. Ionization and perturbation of 8-nitroxanthine at the urate oxidase active site. Biochemistry 2005; 44: 11440–11446.
- 7 Klinman JP. Life as aerobes: are there simple rules for activation of dioxygen by enzymes ? J Biol Inorg Chem 2001; 6: 1–13.
- 8 Fetzner S. Oxygenases without requirement for cofactors or metal ions. Appl Microbiol Biotechnol 2002; 60: 243–257.
- 9 Colloc'h N,El Hajji M,Bachet B,L'Hermite G,Schiltz M,Prangé T,Castro B,Mornon JP. Crystal structure of the protein drug urate oxidase-inhibitor complex at 2.05 Å resolution. Nat Struct Biol 1997; 4: 947–952.
- 10 Retailleau P,Colloc'h N,Vivarès D,Bonneté F,Castro B,El Hajji M,Mornon JP,Monard G,Prangé T. Complexed and ligand-free high-resolution structures of urate oxidase (Uox) from Aspergillus flavus: a reassignment of the active-site binding mode. Acta Crystallogr D 2004; 60: 453–462.
- 11 Retailleau P,Colloc'h N,Vivarès D,Bonneté F,Castro B,El Hajji M,T.Prangé T. Urate oxidase from Aspergillus flavus: new crystal-packing contacts in relation to the content of the active site. Acta Crystallogr D 2005; 61: 218–229.
- 12 Colloc'h N,Gabison L,Monard G,Altarsha M,Chiadmi M,Marassio G,Sopkova-de Oliveira Santos J,El Hajji M,Castro B,Abraini JH,Prangé T. Oxygen pressurized X-ray crystallography: probing the dioxygen binding site in cofactor-less urate oxidase and implications to its catalytic mechanism. Biophys J 2008; 95: 2415–2422.
- 13 Gabison L,Prangé T,Colloc'h N,El Hajji M,Castro B,Chiadmi M. Structural analysis of urate oxidase in complex with its natural substrate inhibited by cyanide: mechanistic implications. BMC Struct Biol 2008; 8: 32–39.
- 14 Gabison L,Chiadmi M,El Hajji M,Castro B,Colloc'h N,Prangé T. Near-atomic resolution structure of urate oxidase complexed with its substrate and analogues: the protonation state of the ligand. Acta Crystallogr D 2010; 66: 714–724.
- 15 Leslie AGW. MOSFLM user guide, version 5.20. Cambridge, UK: MRC Laboratory of Molecular Biology; 1994.
- 16 Collaborative computer program, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D 1994; 50: 760–763.
- 17 Brünger AT,Adams PD,Clore GM,DeLano WL,Gros P,Grosse-Kunstleve RW,Jiang JS,Kuszewski J,Nilges M,Pannu NS,Read R,Rice LM,Simonson T,Warren GL. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D 1998; 54: 905–921.
- 18 Sheldrick GM,Schneider TR. SHELXL: high resolution refinement. Methods Enzymol 1997; 277: 319–341.
- 19 Jones TA,Zou JY,Cowan SW,Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 1991; 47: 110–119.
- 20 Zhao HT,Joseph J,Zhang H,Karoui H,Kalyanaraman B. Synthesis and biochemical applications of a solid cyclic nitrone spin trap: a relatively superior trap for detecting superoxide anions and glutathiyl radicals. Free Radical Biol Med 2001; 31: 599–606.
- 21 Rockenbauer A,Korecz L. Automatic computer simulations of ESR spectra. Appl Magn Reson 1996; 10: 29–43.
- 22 Lauricella R,Allouch A,Roubaud V,Bouteiller JC,Tuccio B. A new kinetic approach to the evaluation of rate constants for the spin trapping of superoxide/hydroperoxyl radical by nitrones in aqueous media. Org Biomol Chem 2004; 2: 1304–1309.
- 23 Stoll S,Scheiger A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. 2006. J Magn Reson 2006; 178: 42–55.
- 24 Frisch MJ, Trucks, GW, Schlegel, HB, Scuseria, GE, Robb, MA, Cheeseman, JR, Scalmani, G, Barone, V, Mennucci, B, Petersson, GA, Nakatsuji, H, Caricato, M, Li, X, Hratchian, HP, Izmaylov, AF, Bloino, J, Zheng, G, Sonnenberg, JL, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Vreven, T, Montgomery Jr JA, Peralta, JE, Ogliaro, F, Bearpark, M, Heyd, JJ, Brothers, E, Kudin, KN, Staroverov, VN, Kobayashi, R, Normand, J, Raghavachari, K, Rendell, A, Burant, JC, Iyengar, SS, Tomasi, J, Cossi, M, Rega, N, Millam, JM, Klene, M, Knox, JE, Cross, JB, Bakken, V, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, RE, Yazyev, O, Austin, A.J., Cammi, R., Pomelli, C., Ochterski, JW, Martin, RL, Morokuma, K, Zakrzewski, VG, Voth, GA, Salvador, P, Dannenberg, JJ, Dapprich, S, Daniels, AD, Farkas, O, Foresman, JB, Ortiz, JV, Cioslowski, J, Fox DJ. Gaussian 09, Revision A.02; Wallingford, CT: Gaussian, Inc 2009.
- 25 Busi E,Sinicropi A,Terzuoli L,Marinello E,Basosi R. Identification and structural characterization of a transient radical species in the uricase reaction mechanism. Appl Magn Reson 2007; 31: 471–482.
- 26 Maples KR,Mason RP. Free radical metabolite of uric acid. J Biol Chem 1988; 263: 1709–1712.
- 27Spin Trap Database: http://tools.niehs.nih.gov/stdb/index.cfm
- 28 Battelli F,Stern L. Researches on the uricase in animal. Biochem Z 1909; 19: 219–253.
- 29
Felix F,Scheel F,Schuler W.
Die urikolyse.
Hoppe-Seyl Z
1929;
180:
90–106.
10.1515/bchm2.1929.180.1-3.90 Google Scholar
- 30 Sarma AD,Serfozo P,Kahn K,Tipton PA. Identification and purification of hydroxyisourate hydrolase, a novel ureide-metabolizing enzyme. J Biol Chem 1999; 274: 33863–33865.
- 31 Ramazzina I,Folli C,Secchi A,Berni R,Percudani R. Completing the uric acid degradation pathway through phylogenic comparison of whole genomes. Nat Chem Biol 2006; 2: 144–148.
- 32 Widboom PF,Fielding EN,Liu Y,Bruner SD. Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis. Nature 2007; 447: 342–345.
- 33 Steiner RA,Janssen HJ,Roversi P,Oakley AJ,Fetzner S. Structural basis of cofactor-independent dioxygenation of N-heteroatomic compounds at the α/β hydrolase fold. Proc Natl Acad Sci USA 2010; 107: 657–662.
- 34 Shen B,Hutchinson CR. Tetracenomycin F1 monooxygenase: oxidation of a naphthacenone to a naphtacenequinone in the biosynthesis of tetracenomycin C in Streptomyces glaucescens. Biochemistry 1993; 32: 6656–6663.
- 35 Chung JY,Fujii I,Harada S,Sankawa U,Ebizuka Y. Expression, purification, and characterization of AknX anthrone oxygenase, which is involved in aklavinone biosynthesis in Streptomyces galilaeus. J Bacteriol 2002; 184: 6115–6122.
- 36 Sciara G,Kendrew SG,Miele AE,Marsh NG,Federici L,Malatesta F,Schimperna G,Savino C,Vallone B. The structure of ActVA-Orf6, a novel type of monooxygenase involved in actinorhodin biosynthesis. EMBO J 2003; 22: 205–215.
- 37 Grocholski T,Koskiniemi H,Lindqvist Y,Mäntsälä P,Niemi J,Schneider G. Crystal structure of the cofactor-independent monooxygenase SnoaB from Streptomyces nogalater: implications for the reaction mechanism. Biochemistry 2010; 9: 934–944.
- 38 Liu A,Jin Y,Brazeau BJ,Lipscomb JD. Substrate radical intermediates in soluble methane monooxygenase. Biochem Biophys Res Commun 2005; 338: 254–261.
- 39 Kendrew SG,Hopwood DA,Marsh ENG. Identification of a monooxygenase from Streptomyces coelicolor A3(2) involved in the biosynthesis of actinorhodin: purification and characterization of the recombinant enzyme. J Bacteriol 1997; 179: 4305–4310.
- 40 Hibi T,Nago T,Nishiya Y,Oda J. Crystal structure of urate oxidase from Bacillus sp. TB-90 co-crystallized with 8-azaxanthine, DOI 10.2210/pdb1j2g/pdb.
- 41 Li H,Robertson AD,Jensen JH. Very fast empirical prediction and rationalization of protein pKa values. Proteins 2005; 61: 704–721.
- 42 Trickey P,Wagner MA,Schuman-Jorns M,Mathews S. Monomeric sarcosine oxidase: structure of a covalently flavinylated amine oxidizing enzyme. Structure 1999; 7: 331–345.
- 43 Juan EC,Hoque MM,Shimizu S,Hossain MT,Yamamoto T,Imamura S,Suzuki K,Tsunoda M,Amano H,Sekiguchi T,Takénaka A. Structures of Arthrobacter globiformis urate oxidase-ligand complexes. Acta Crystallogr D 2008; 64: 815–822.
- 44 Girard E,Marchal S,Perez J,Finet S,Kahn R,Fourme R,Marassio G,Dhaussy AC,Prangé T,Giffard M,Dulin F,Bonneté F,Lange R,Abraini J,Mezouar M,Colloc'h N. Structure-function perturbation and dissociation of tetrameric urate oxidase by high hydrostatic pressure. Biophys J 2010; 98: 2365–2373.
- 45 Nelson MJ,Cowling RA,Seitz SP. Structural characterization of alkyl and peroxyl radicals in solutions of purple lipoxygenase. Biochemistry 1994; 33: 4966–4973.
- 46 Altarsha M,Castro B,Monard G. Intrinsic reactivity of uric acid with dioxygen: towards the elucidation of the catalytic mechanism of urate oxidase. Bioorg chem 2009; 37: 111–125.
- 47 Sarma AD,Tipton PA. Evidence for urate hydroperoxide as an intermediate in the urate oxidase reaction. J Am Chem Soc 2000; 122: 11252–11253.
- 48 Fetzner S,Steiner R. Co-factor independent oxidases and oxygenases. Appl Microbiol Biotechnol 2010; 86: 791–804.