Crystal structure of a phenol-coupling P450 monooxygenase involved in teicoplanin biosynthesis
Zhi Li
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Search for more papers by this authorSanjeewa G. Rupasinghe
Department of Cell and Developmental Biology, 161 Edward R. Madigan Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Department of Plant Biology, 161 Edward R. Madigan Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Search for more papers by this authorMary A. Schuler
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Department of Cell and Developmental Biology, 161 Edward R. Madigan Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Department of Plant Biology, 161 Edward R. Madigan Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Search for more papers by this authorCorresponding Author
Satish K. Nair
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Department of Biochemistry, 600 S. Mathews Avenue, Urbana, IL 61801===Search for more papers by this authorZhi Li
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Search for more papers by this authorSanjeewa G. Rupasinghe
Department of Cell and Developmental Biology, 161 Edward R. Madigan Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Department of Plant Biology, 161 Edward R. Madigan Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Search for more papers by this authorMary A. Schuler
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Department of Cell and Developmental Biology, 161 Edward R. Madigan Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Department of Plant Biology, 161 Edward R. Madigan Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Search for more papers by this authorCorresponding Author
Satish K. Nair
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Department of Biochemistry, 600 S. Mathews Avenue, Urbana, IL 61801===Search for more papers by this authorAbstract
The lipoglycopeptide antibiotic teicoplanin has proven efficacy against gram-positive pathogens. Teicoplanin is distinguished from the vancomycin-type glycopeptide antibiotics, by the presence of an additional cross-link between the aromatic amino acids 1 and 3 that is catalyzed by the cytochrome P450 monooxygenase Orf6* (CYP165D3). As a goal towards understanding the mechanism of this phenol-coupling reaction, we have characterized recombinant Orf6* and determined its crystal structure to 2.2-Å resolution. Although the structure of Orf6* reveals the core fold common to other P450 monooxygenases, there are subtle differences in the disposition of secondary structure elements near the active site cavity necessary to accommodate its complex heptapeptide substrate. Specifically, the orientation of the F and G helices in Orf6* results in a more closed active site than found in the vancomycin oxidative enzymes OxyB and OxyC. In addition, Met226 in the I helix replaces the more typical Gly/Ala residue that is positioned above the heme porphyrin ring, where it forms a hydrogen bond with a heme iron-bound water molecule. Sequence comparisons with other phenol-coupling P450 monooxygenases suggest that Met226 plays a role in determining the substrate regiospecificity of Orf6*. These features provide further insights into the mechanism of the cross-linking mechanisms that occur during glycopeptide antibiotics biosynthesis. Proteins 2011; © 2011 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_22996_sm_suppinfofigs.pdf2.1 MB | Supporting Information Figures |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Kahne D,Leimkuhler C,Lu W,Walsh C. Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 2005; 105: 425–448.
- 2 Moellering RC,Jr. Vancomycin: a 50-year reassessment. Clin Infect Dis 2006; 42 ( Suppl 1): S3–S4.
- 3 Anstead GM,Owens AD. Recent advances in the treatment of infections due to resistant Staphylococcus aureus. Curr Opin Infect Dis 2004; 17: 549–555.
- 4 Anstead GM,Quinones-Nazario G,Lewis JS,II. Treatment of infections caused by resistant Staphylococcus aureus. Methods Mol Biol 2007; 391: 227–258.
- 5 Cunha BA. Antimicrobial therapy of multidrug-resistant Streptococcus pneumoniae, vancomycin-resistant enterococci, and methicillin-resistant Staphylococcus aureus. Med Clin North Am 2006; 90: 1165–1182.
- 6 Murray BE. Vancomycin-resistant enterococcal infections. N Engl J Med 2000; 342: 710–721.
- 7 Hiramatsu K,Hanaki H,Ino T,Yabuta K,Oguri T,Tenover FC. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 1997; 40: 135–136.
- 8 Sieradzki K,Roberts RB,Haber SW,Tomasz A. The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. N Engl J Med 1999; 340: 517–523.
- 9 Van Bambeke F. Glycopeptides and glycodepsipeptides in clinical development: a comparative review of their antibacterial spectrum, pharmacokinetics and clinical efficacy. Curr Opin Investig Drugs 2006; 7: 740–749.
- 10 Malabarba A,Goldstein BP. Origin, structure, and activity in vitro and in vivo of dalbavancin. J Antimicrob Chemother 2005; 55 ( Suppl 2): ii15–ii20.
- 11 Donadio S,Sosio M,Stegmann E,Weber T,Wohlleben W. Comparative analysis and insights into the evolution of gene clusters for glycopeptide antibiotic biosynthesis. Mol Genet Genomics 2005; 274: 40–50.
- 12 Hadatsch B,Butz D,Schmiederer T,Steudle J,Wohlleben W,Sussmuth R,Stegmann E. The biosynthesis of teicoplanin-type glycopeptide antibiotics: assignment of p450 mono-oxygenases to side chain cyclizations of glycopeptide a47934. Chem Biol 2007; 14: 1078–1089.
- 13
Bischoff D,Pelzer S,Bister B,Nicholson GJ,Stockert S,Schirle M,Wohlleben W,Jung G,Sussmuth RD.
The biosynthesis of vancomycin-type glycopeptide antibiotics-the order of the cyclization steps.
Angew Chem Int Ed Engl
2001;
40:
4688–4691.
10.1002/1521-3773(20011217)40:24<4688::AID-ANIE4688>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 14
Bischoff D,Pelzer S,Holtzel A,Nicholson GJ,Stockert S,Wohlleben W,Jung G,Sussmuth RD.
The biosynthesis of vancomycin-type glycopeptide antibiotics-new insights into the cyclization steps.
Angew Chem Int Ed Engl
2001;
40:
1693–1696.
10.1002/1521-3773(20010504)40:9<1693::AID-ANIE16930>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 15 Pelzer S,Reichert W,Huppert M,Heckmann D,Wohlleben W. Cloning and analysis of a peptide synthetase gene of the balhimycin producer Amycolatopsis mediterranei DSM5908 and development of a gene disruption/replacement system. J Biotechnol 1997; 56: 115–128.
- 16 Stegmann E,Pelzer S,Bischoff D,Puk O,Stockert S,Butz D,Zerbe K,Robinson J,Sussmuth RD,Wohlleben W. Genetic analysis of the balhimycin (vancomycin-type) oxygenase genes. J Biotechnol 2006; 124: 640–653.
- 17
Süssmuth RD,Pelzer S,Nicholson G,Walk T,Wohlleben W,Jung G.
New advances in the biosynthesis of glycopeptide antibiotics of the vancomycin type from amycolatopsis mediterranei.
Angew Chem Int Ed Engl
1999;
38:
1976–1979.
10.1002/(SICI)1521-3773(19990712)38:13/14<1976::AID-ANIE1976>3.0.CO;2-3 CAS Web of Science® Google Scholar
- 18 Sussmuth RD,Wohlleben W. The biosynthesis of glycopeptide antibiotics—a model for complex, non-ribosomally synthesized, peptidic secondary metabolites. Appl Microbiol Biotechnol 2004; 63: 344–350.
- 19 Hubbard BK,Walsh CT. Vancomycin assembly: nature's way. Angew Chem Int Ed Engl 2003; 42: 730–765.
- 20 Pelzer S,Sussmuth R,Heckmann D,Recktenwald J,Huber P,Jung G,Wohlleben W. Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908. Antimicrob Agents Chemother 1999; 43: 1565–1573.
- 21 Pootoolal J,Thomas MG,Marshall CG,Neu JM,Hubbard BK,Walsh CT,Wright GD. Assembling the glycopeptide antibiotic scaffold: The biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Proc Natl Acad Sci USA 2002; 99: 8962–8967.
- 22 Li TL,Huang F,Haydock SF,Mironenko T,Leadlay PF,Spencer JB. Biosynthetic gene cluster of the glycopeptide antibiotic teicoplanin: characterization of two glycosyltransferases and the key acyltransferase. Chem Biol 2004; 11: 107–119.
- 23 Sosio M,Stinchi S,Beltrametti F,Lazzarini A,Donadio S. The gene cluster for the biosynthesis of the glycopeptide antibiotic A40926 by nonomuraea species. Chem Biol 2003; 10: 541–549.
- 24 Puk O,Huber P,Bischoff D,Recktenwald J,Jung G,Sussmuth RD,van Pee KH,Wohlleben W,Pelzer S. Glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908: function of a halogenase and a haloperoxidase/perhydrolase. Chem Biol 2002; 9: 225–235.
- 25 Woithe K,Geib N,Zerbe K,Li DB,Heck M,Fournier-Rousset S,Meyer O,Vitali F,Matoba N,Abou-Hadeed K,Robinson JA. Oxidative phenol coupling reactions catalyzed by OxyB: a cytochrome P450 from the vancomycin producing organism. Implications for vancomycin biosynthesis. J Am Chem Soc 2007; 129: 6887–6895.
- 26 Malabarba A,Ferrari P,Gallo GG,Kettenring J,Cavalleri B. Teicoplanin, antibiotics from Actinoplanes teichomyceticus nov. sp. VII Preparation and NMR characteristics of the aglycone of teicoplanin J Antibiot (Tokyo) 1986; 39: 1430–1442.
- 27 Van Duyne GD,Standaert RF,Karplus PA,Schreiber SL,Clardy J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J Mol Biol 1993; 229: 105–124.
- 28 Otwinowski Z,Borek D,Majewski W,Minor W. Multiparametric scaling of diffraction intensities. Acta Crystallogr A 2003; 59: 228–234.
- 29 Grosse-Kunstleve RW,Adams PD. Substructure search procedures for macromolecular structures. Acta Crystallogr D Biol Crystallogr 2003; 59: 1966–1973.
- 30 Adams PD,Grosse-Kunstleve RW,Hung LW,Ioerger TR,McCoy AJ,Moriarty NW,Read RJ,Sacchettini JC,Sauter NK,Terwilliger TC. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 2002; 58: 1948–1954.
- 31 Perrakis A,Morris R,Lamzin VS. Automated protein model building combined with iterative structure refinement. Nat Struct Biol 1999; 6: 458–463.
- 32 McRee DE. XtalView/Xfit—A versatile program for manipulating atomic coordinates and electron density. J Struct Biol 1999; 125: 156–165.
- 33 Murshudov GN,Vagin AA,Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 1997; 53: 240–255.
- 34 Kleywegt GJ,Brunger AT. Checking your imagination: applications of the free R value. Structure 1996; 4: 897–904.
- 35 Laskowski RA,Rullmannn JA,MacArthur MW,Kaptein R,Thornton JM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 1996; 8: 477–486.
- 36 Hill HAO,Röder A,Williams RJP. Cytochrome P-450 suggestions as to the structure and mechanism of action. Naturwissenschaften 1970; 57: 69–72.
- 37 Zerbe K,Pylypenko O,Vitali F,Zhang W,Rouset S,Heck M,Vrijbloed JW,Bischoff D,Bister B,Sussmuth RD,Pelzer S,Wohlleben W,Robinson JA,Schlichting I. Crystal structure of OxyB, a cytochrome P450 implicated in an oxidative phenol coupling reaction during vancomycin biosynthesis. J Biol Chem 2002; 277: 47476–47485.
- 38 Pylypenko O,Vitali F,Zerbe K,Robinson JA,Schlichting I. Crystal structure of OxyC, a cytochrome P450 implicated in an oxidative C-C coupling reaction during vancomycin biosynthesis. J Biol Chem 2003; 278: 46727–46733.
- 39 Jefcoate CR. Measurement of substrate and inhibitor binding to microsomal cytochrome P-450 by optical-difference spectroscopy. Methods Enzymol 1978; 52: 258–279.
- 40 Graham SE,Peterson JA. How similar are P450s and what can their differences teach us? Arch Biochem Biophys 1999; 369: 24–29.
- 41 Holm L,Rosenstrom P. Dali server: conservation mapping in 3D. Nucleic Acids Res 2010; 38( Suppl): W545–W549.
- 42 Park SY,Shimizu H,Adachi S,Nakagawa A,Tanaka I,Nakahara K,Shoun H,Obayashi E,Nakamura H,Iizuka T,Shiro Y. Crystal structure of nitric oxide reductase from denitrifying fungus Fusarium oxysporum. Nat Struct Biol 1997; 4: 827–832.
- 43 Xu LH,Fushinobu S,Ikeda H,Wakagi T,Shoun H. Crystal structures of cytochrome P450 105P1 from Streptomyces avermitilis: conformational flexibility and histidine ligation state. J Bacteriol 2009; 191: 1211–1219.
- 44 Xu LH,Fushinobu S,Takamatsu S,Wakagi T,Ikeda H,Shoun H. Regio- and stereospecificity of filipin hydroxylation sites revealed by crystal structures of cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis. J Biol Chem 2010; 285: 16844–16853.
- 45 Denisov IG,Makris TM,Sligar SG,Schlichting I. Structure and chemistry of cytochrome P450. Chem Rev 2005; 105: 2253–2277.
- 46 Oshima R,Fushinobu S,Su F,Zhang L,Takaya N,Shoun H. Structural evidence for direct hydride transfer from NADH to cytochrome P450nor. J Mol Biol 2004; 342: 207–217.
- 47 Gotoh O. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 1992; 267: 83–90.
- 48 Cryle MJ,Schlichting I. Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the P450(BioI) ACP complex. Proc Natl Acad Sci USA 2008; 105: 15696–15701.