Holo-BtuF stabilizes the open conformation of the vitamin B12 ABC transporter BtuCD
Corresponding Author
Christian Kandt
Department of Life Science Informatics B-IT, University of Bonn, 53113 Bonn, Germany
Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
Computational Structural Biology, Department of Life Science Informatics, B-IT, Life and Medical Sciences (LIMES) Center, University of Bonn, Dahlmannstr 2, 53113 Bonn, Germany===Search for more papers by this authorD. Peter Tieleman
Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
Search for more papers by this authorCorresponding Author
Christian Kandt
Department of Life Science Informatics B-IT, University of Bonn, 53113 Bonn, Germany
Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
Computational Structural Biology, Department of Life Science Informatics, B-IT, Life and Medical Sciences (LIMES) Center, University of Bonn, Dahlmannstr 2, 53113 Bonn, Germany===Search for more papers by this authorD. Peter Tieleman
Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
Search for more papers by this authorAbstract
While there is evidence that other ABC transporters can tell between empty and loaded substrate binding protein, reconstitution experiments suggest otherwise for the Escherichia coli vitamin B12 importer BtuCD-F. Here, we address the question of BtuCD-F substrate sensitivity in a combined protein–protein docking and molecular dynamics simulation approach. Starting from the BtuCD and holo-BtuF crystal structures, we model two holo-BtuCD-F docking complexes differing by a 180° orientation of BtuF. One of these is similar to the apo-BtuCD-F crystal structure. Both docking complexes were embedded in a lipid/water environment to investigate their dynamics and BtuCD's conformational response to the presence and absence of BtuF, vitamin B12, and Mg-ATP in a series of 28 independent MD simulations. We find holo-BtuF stabilizing the open conformation of BtuCD, whereas the transporter begins to close again when BtuF or vitamin B12 is removed—suggesting BtuCD-F is capable of substrate sensitivity. We identified BtuC transmembrane helices 3 and 5, the L-loops and the adjacent helices comprised of BtuC residues 170–180 as hotspots of conformational change. We propose the latter to act as substrate sensors. BtuF-Trp44 appears to act as a lid on the vitamin B12 binding cleft in BtuF X-ray structures and protrudes into the BtuCD transport channel in one of our simulations, which might represent an initial step in vitamin B12 uptake. On an average, we observe subunit motions where the nucleotide binding domains approach each other while the transmembrane domains display an opening trend toward the periplasm. Proteins 2010. © 2009 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_22606_sm_suppinfo.pdf725.6 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Aller SG,Yu J,Ward A,Weng Y,Chittaboina S,Zhuo R,Harrell PM,Trinh YT,Zhang Q,Urbatsch IL,Chang G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009; 323: 1718–1722.
- 2 Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature 2007; 446: 749–757.
- 3 Ward A,Reyes CL,Yu J,Roth CB,Chang G. Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci USA 2007; 104: 19005–19010.
- 4 Lippincott J,Traxler B. MalFGK complex assembly and transport and regulatory characteristics of MalK insertion mutants. J Bacteriol 1997; 179: 1337–1343.
- 5 Oldham ML,Khare D,Quiocho FA,Davidson AL,Chen J. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 2007; 450: 515–521.
- 6 Hvorup RN,Goetz BA,Niederer M,Hollenstein K,Perozo E,Locher KP. Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 2007; 317: 1387–1390.
- 7 Locher KP,Lee AT,Rees DC. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 2002; 296: 1091–1098.
- 8 Stefkova J,Poledne R,Hubacek JA. ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol Res 2004; 53: 235–243.
- 9 Higgins CF. ABC transporters: physiology, structure and mechanism—an overview. Res Microbiol 2001; 152: 205–210.
- 10 Nikaido H,Hall JA. Overview of bacterial ABC transporters. Methods Enzymol 1998; 292: 3–20.
- 11 Davidson AL,Dassa E,Orelle C,Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72: 317–364; table of contents.
- 12 Davidson AL,Chen J. ATP-binding cassette transporters in bacteria. Annu Rev Biochem 2004; 73: 241–268.
- 13 Dawson RJP,Hollenstein K,Locher KP. Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol Microbiol 2007; 65: 250–257.
- 14 Jones PM,George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci 2004; 61: 682–699.
- 15 Moussatova A,Kandt C,O'Mara ML,Tieleman DP. ATP-binding cassette transporters in Escherichia coli. Biochim Biophys Acta 2008; 1778: 1757–1771.
- 16 Oldham ML,Davidson AL,Chen J. Structural insights into ABC transporter mechanism. Curr Opin Struct Biol 2008; 18: 726–733.
- 17 Procko E,O'Mara ML,Bennett WFD,Tieleman DP,Gaudet R. The mechanism of ABC transporters: general lessons from structural and functional studies of an antigenic peptide transporter. FASEB J 2009; 23: 1287–1302.
- 18 Linton KJ,Higgins CF. Structure and function of ABC transporters: the ATP switch provides flexible control. Pflugers Arch 2007; 453: 555–567.
- 19 Pinkett HW,Lee AT,Lum P,Locher KP,Rees DC. An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science 2007; 315: 373–377.
- 20 Hollenstein K,Frei DC,Locher KP. Structure of an ABC transporter in complex with its binding protein. Nature 2007; 446: 213–216.
- 21 Gerber S,Comellas-Bigler M,Goetz BA,Locher KP. Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 2008; 321: 246–250.
- 22 Dawson RJ,Locher KP. Structure of a bacterial multidrug ABC transporter. Nature 2006; 443: 180–185.
- 23 Dawson RJ,Locher KP. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 2007; 581: 935–938.
- 24 Kadaba NS,Kaiser JT,Johnson E,Lee A,Rees DC. The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science 2008; 321: 250–253.
- 25 Chen J,Lu G,Lin J,Davidson AL,Quiocho FA. A Tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol Cell 2003; 12: 651–662.
- 26 Sonne J,Kandt C,Peters GH,Hansen FY,Jensen MO,Tieleman DP. Simulation of the coupling between nucleotide binding and transmembrane domains in the ATP binding cassette transporter BtuCD. Biophys J 2007; 92: 2727–2734.
- 27 Cherezov V,Yamashita E,Liu W,Zhalnina M,Cramer WA,Caffrey M. In meso structure of the cobalamin transporter. Btu B, at 195 A resolution. J Mol Biol 2006; 364: 716–734.
- 28 Chimento DP,Kadner RJ,Wiener MC. The Escherichia coli outer membrane cobalamin transporter BtuB: structural analysis of calcium and substrate binding, and identification of orthologous transporters by sequence/structure conservation. J Mol Biol 2003; 332: 999–1014.
- 29 Shultis DD,Purdy MD,Banchs CN,Wiener MC. Outer membrane active transport: structure of the BtuB:TonB complex. Science 2006; 312: 1396–1399.
- 30 Borths EL,Locher KP,Lee AT,Rees DC. The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc Natl Acad Sci USA 2002; 99: 16642–16647.
- 31 Karpowich NK,Huang HH,Smith PC,Hunt JF. Crystal structures of the BtuF periplasmic-binding protein for vitamin B12 suggest a functionally important reduction in protein mobility upon ligand binding. J Biol Chem 2003; 278: 8429–8434.
- 32 Bassford PJ,Jr,Bradbeer C,Kadner RJ,Schnaitman CA. Transport of vitamin B12 in tonB mutants of Escherichia coli. J Bacteriol 1976; 128: 242–247.
- 33 Borths EL,Poolman B,Hvorup RN,Locher KP,Rees DC. In vitro functional characterization of BtuCD-F, the Escherichia coli ABC transporter for vitamin B12 uptake. Biochemistry 2005; 44: 16301–16309.
- 34 Carter DM,Miousse IR,Gagnon JN,Martinez E,Clements A,Lee J,Hancock MA,Gagnon H,Pawelek PD,Coulton JW. Interactions between TonB from Escherichia coli and the periplasmic protein FhuD. J Biol Chem 2006; 281: 35413–35424.
- 35 Kandt C,Xu Z,Tieleman DP. Opening and closing motions in the periplasmic vitamin B12 binding protein BtuF. Biochemistry 2006; 45: 13284–13292.
- 36 Oloo EO,Tieleman DP. Conformational transitions induced by the binding of MgATP to the vitamin B12 ATP-binding cassette (ABC) transporter BtuCD. J Biol Chem 2004; 279: 45013–45019.
- 37 Ames GF,Liu CE,Joshi AK,Nikaido K. Liganded and unliganded receptors interact with equal affinity with the membrane complex of periplasmic permeases, a subfamily of traffic ATPases. J Biol Chem 1996; 271: 14264–14270.
- 38 Boos W,Lucht J. Periplasmic binding protein-dependent ABC transporters. F Neidhardt, editor. Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Washington, DC: American Society for Microbiology; 1996.
- 39 Liu CE,Liu PQ,Ames GF. Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase (ABC transporter). J Biol Chem 1997; 272: 21883–21891.
- 40 Merino G,Boos W,Shuman HA,Bohl E. The inhibition of maltose transport by the unliganded form of the maltose-binding protein of Escherichia coli: experimental findings and mathematical treatment. J Theory Biol 1995; 177: 171–179.
- 41 Patzlaff JS,van der Heide T,Poolman B. The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J Biol Chem 2003; 278: 29546–29551.
- 42 Reich-Slotky R,Panagiotidis C,Reyes M,Shuman HA. The detergent-soluble maltose transporter is activated by maltose binding protein and verapamil. J Bacteriol 2000; 182: 993–1000.
- 43 Weng J,Ma J,Fan K,Wang W. The conformational coupling and translocation mechanism of vitamin B12 ATP-binding cassette transporter BtuCD. Biophys J 2008; 94: 612–621.
- 44 Wen PC,Tajkhorshid E. Dimer opening of the nucleotide binding domains of ABC transporters after ATP hydrolysis. Biophys J 2008; 95: 5100–5110.
- 45 Kandt C,Oloo E,Tieleman D. Domain coupling in the ABC transporter system BtuCD/BtuF: molecular dynamics simulation, normal mode analysis and protein-protein docking. Saskatoon SK, Canada: IEEE Computer Society Press; 2007.
- 46 Jones PM,George AM. Nucleotide-dependent allostery within the ABC transporter ATP-binding cassette: a computational study of the MJ0796 dimer. J Biol Chem 2007; 282: 22793–22803.
- 47 Ivetac A,Campbell JD,Sansom MS. Dynamics and function in a bacterial ABC transporter: simulation studies of the BtuCDF system and its components. Biochemistry 2007; 46: 2767–2778.
- 48 Oloo EO,Kandt C,O'Mara ML,Tieleman DP. Computer simulations of ABC transporter components. Biochem Cell Biol 2006; 84: 900–911.
- 49 Oloo EO,Fung EY,Tieleman DP. The dynamics of the MgATP-driven closure of MalK, the energy-transducing subunit of the maltose ABC transporter. J Biol Chem 2006; 281: 28397–28407.
- 50 Caves LS,Evanseck JD,Karplus M. Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin. Protein Sci 1998; 7: 649–666.
- 51 Chen R,Li L,Weng Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins 2003; 52: 80–87.
- 52 Chen R,Weng ZP. Docking unbound proteins using shape complementarity, desolvation, and electrostatics. Proteins: Struct Funct Genet 2002; 47: 281–294.
- 53
Ritchie DW,Kemp GJL.
Protein docking using spherical polar Fourier correlations.
Proteins: Struct Funct Genet
2000;
39:
178–194.
10.1002/(SICI)1097-0134(20000501)39:2<178::AID-PROT8>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar
- 54 Berendsen HJC,Vanderspoel D,Vandrunen R. Gromacs—a message-passing parallel molecular-dynamics implementation. Comput Phys Commun 1995; 91: 43–56.
- 55 Lindahl E,Hess B,van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 2001; 7: 306–317.
- 56 Kandt C,Ash WL,Peter Tieleman D. Setting up and running molecular dynamics simulations of membrane proteins. Methods 2007; 41: 475–488.
- 57
Berendsen HJC,Postma JPM,Vangunsteren WF,Hermans J.
Interaction models for water in relation to protein hydration. In:
B Pullman, editor.
Intermolecular forces.
Dordrecht:
Reidel;
1981. pp
331–342.
10.1007/978-94-015-7658-1_21 Google Scholar
- 58 Hess B,Bekker H,Berendsen HJC,Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J Comput Chem 1997; 18: 1463–1472.
- 59 Berendsen HJC,Postma JPM,Vangunsteren WF,Dinola A,Haak JR. Molecular-dynamics with coupling to an external bath. J Chem Phys 1984; 81: 3684–3690.
- 60 Darden T,York D,Pedersen L. Particle Mesh Ewald—an n. log(n) method for Ewald sums in large systems. J Chem Phys 1993; 98: 10089–10092.
- 61 Essmann U,Perera L,Berkowitz ML,Darden T,Lee H,Pedersen LG. A smooth particle Mesh Ewald method. J Chem Phys 1995; 103: 8577–8593.
- 62 Oostenbrink C,Villa A,Mark AE,van Gunsteren WF. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 2004; 25: 1656–1676.
- 63 Hess B,Kutzner C,van der Spoel D,Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 2008; 4: 435–447.
- 64 Kandt C,Gerwert K,Schlitter J. Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein. Proteins 2005; 58: 528–537.
- 65 Kandt C,Schlitter J,Gerwert K. Dynamics of water molecules in the bacteriorhodopsin trimer in explicit lipid/water environment. Biophys J 2004; 86: 705–717.
- 66 Humphrey W,Dalke A,Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996; 14: 33–38, 27–38.
- 67 Hubbard S,Thornton J. NACCESS. Department of Biochemistry and Molecular Biology, University College London; 1993.
- 68 Sayle RA,Milner-White EJ. RASMOL: biomolecular graphics for all. Trends Biochem Sci 1995; 20: 374–376.
- 69 DeLano WL. The PyMol molecular graphics system. San Carlos, CA: DeLano Scientific; 2002.
- 70 Laskowski RA. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 1995; 13: 323–330, 307–328.
- 71 Petrek M,Otyepka M,Banas P,Kosinova P,Koca J,Damborsky J. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinform 2006; 7: 316–324.
- 72 Smart OS,Neduvelil JG,Wang X,Wallace BA,Sansom MS. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph 1996; 14: 354–360, 376.
- 73 Liao JC,Sun S,Chandler D,Oster G. The conformational states of Mg.ATP in water. Eur Biophys J 2004; 33: 29–37.
- 74 Liu M,Sun T,Hu J,Chen W,Wang C. Study on the mechanism of the BtuF periplasmic-binding protein for vitamin B12. Biophys Chem 2008; 135: 19–24.