The (non)malignancy of cancerous amino acidic substitutions
Corresponding Author
David Talavera
EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom===Search for more papers by this authorMartin S. Taylor
EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
Search for more papers by this authorJanet M. Thornton
EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
Search for more papers by this authorCorresponding Author
David Talavera
EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom===Search for more papers by this authorMartin S. Taylor
EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
Search for more papers by this authorJanet M. Thornton
EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
Search for more papers by this authorAbstract
The process of natural selection acts both on individual organisms within a population and on individual cells within an organism as they develop into cancer. In this work, we have taken a first step toward understanding the differences in selection pressures exerted on the human genome under these disparate circumstances. Focusing on single amino acid substitutions, we have found that cancer-related mutations (CRMs) are frequent in evolutionarily conserved sites, whereas single amino acid polymorphisms (SAPs) tend to appear in sites having a more relaxed evolutionary pressure. Those CRMs classed as cancer driver mutations show greater enrichment for conserved sites than passenger mutations. Consistent with this, driver mutations are enriched for sites annotated as key functional residues and their neighbors, and are more likely to be located on the surface of proteins than expected by chance. Overall the pattern of CRM and polymorphism is remarkably similar, but we do see a clear signal indicative of diversifying selection for disruptive amino acid substitutions in the cancer driver mutations. The ultimate consequence of the appearance of those mutations must be advantageous for the tumor cell, leading to cell population-growth and migration events similar to those seen in natural ecosystems. Proteins 2010. © 2009 Wiley-Liss, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
PROT_22574_sm_suppinfo.pdf206.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Neel JV. Frequency of spontaneous and induced “point” mutations in higher eukaryotes. J Hered 1983; 74: 2–15.
- 2 Talavera D,Vogel C,Orozco M,Teichmann SA,de la Cruz X. The (in)dependence of alternative splicing and gene duplication. PLoS Comput Biol 2007; 3: e33.
- 3 Fitch WM. Homology a personal view on some of the problems. Trends Genet 2000; 16: 227–231.
- 4 Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet 2008; 9: 397–405.
- 5 Labrador M,Corces VG. Transposable element-host interactions: regulation of insertion and excision. Annu Rev Genet 1997; 31: 381–404.
- 6 Jawad M,Giotopoulos G,Fitch S,Cole C,Plumb M,Talbot CJ. Mouse bone marrow and peripheral blood erythroid cell counts are regulated by different autosomal genetic loci. Blood Cells Mol Dis 2007; 38: 69–77.
- 7 Valdar W,Solberg LC,Gauguier D,Burnett S,Klenerman P,Cookson WO,Taylor MS,Rawlins JN,Mott R,Flint J. Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 2006; 38: 879–887.
- 8 Blencowe BJ. Alternative splicing: new insights from global analyses. Cell 2006; 126: 37–47.
- 9 Lopez-Bigas N,Audit B,Ouzounis C,Parra G,Guigo R. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 2005; 579: 1900–1903.
- 10 Srebrow A,Kornblihtt AR. The connection between splicing and cancer. J Cell Sci 2006; 119 (Part 13): 2635–2641.
- 11 Venables JP. Aberrant and alternative splicing in cancer. Cancer Res 2004; 64: 7647–7654.
- 12 Rohrbach S,Muller-Werdan U,Werdan K,Koch S,Gellerich NF,Holtz J. Apoptosis-modulating interaction of the neuregulin/erbB pathway with antracyclines in regulating Bcl-xS and Bcl-xL in cardiomyocytes. J Mol Cell Cardiol 2005; 38: 485–493.
- 13 Taylor JK,Zhang QQ,Wyatt JR,Dean NM. Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat Biotechnol 1999; 17: 1097–1100.
- 14 Kalnina Z,Zayakin P,Silina K,Line A. Alterations of pre-mRNA splicing in cancer. Genes Chromosomes Cancer 2005; 42: 342–357.
- 15 Roy M,Xu Q,Lee C. Evidence that public database records for many cancer-associated genes reflect a splice form found in tumors and lack normal splice forms. Nucleic Acids Res 2005; 33: 5026–5033.
- 16 Ohta T. Simple model for treating evolution of multigene families. Nature 1976; 263: 74–76.
- 17 Strausberg RL,Greenhut SF,Grouse LH,Schaefer CF,Buetow KH. In silico analysis of cancer through the Cancer Genome Anatomy Project. Trends Cell Biol 2001; 11: S66–S71.
- 18 Vogelstein B,Kinzler KW. The multistep nature of cancer. Trends Genet 1993; 9: 138–141.
- 19 Feinberg AP,Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004; 4: 143–153.
- 20 Kinzler KW,Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 1997; 386: 761–763.
- 21 Loeb LA. A mutator phenotype in cancer. Cancer Res 2001; 61: 3230–3239.
- 22 Bielas JH,Loeb KR,Rubin BP,True LD,Loeb LA. Human cancers express a mutator phenotype. Proc Natl Acad Sci USA 2006; 103: 18238–18242.
- 23 Yue P,Li Z,Moult J. Loss of protein structure stability as a major causative factor in monogenic disease. J Mol Biol 2005; 353: 459–473.
- 24 Martin AC,Facchiano AM,Cuff AL,Hernandez-Boussard T,Olivier M,Hainaut P,Thornton JM. Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein. Hum Mutat 2002; 19: 149–164.
- 25 Hainaut P,Olivier M,Pfeifer GP. TP53 mutation spectrum in lung cancers and mutagenic signature of components of tobacco smoke: lessons from the IARC TP53 mutation database. Mutagenesis 2001; 16: 551–553; Author reply 555–556.
- 26 Esteller M,Toyota M,Sanchez-Cespedes M,Capella G,Peinado MA,Watkins DN,Issa JP,Sidransky D,Baylin SB,Herman JG. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res 2000; 60: 2368–2371.
- 27 Gough CA,Gojobori T,Imanishi T. Cancer-related mutations in BRCA1-BRCT cause long-range structural changes in protein-protein binding sites: a molecular dynamics study. Proteins 2007; 66: 69–86.
- 28 Davies H,Bignell GR,Cox C,Stephens P,Edkins S,Clegg S,Teague J,Woffendin H,Garnett MJ,Bottomley W,Davis N,Dicks E,Ewing R,Floyd Y,Gray K,Hall S,Hawes R,Hughes J,Kosmidou V,Menzies A,Mould C,Parker A,Stevens C,Watt S,Hooper S,Wilson R,Jayatilake H,Gusterson BA,Cooper C,Shipley J,Hargrave D,Pritchard-Jones K,Maitland N,Chenevix-Trench G,Riggins GJ,Bigner DD,Palmieri G,Cossu A,Flanagan A,Nicholson A,Ho JW,Leung SY,Yuen ST,Weber BL,Seigler HF,Darrow TL,Paterson H,Marais R,Marshall CJ,Wooster R,Stratton MR,Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.
- 29 Stephens P,Hunter C,Bignell G,Edkins S,Davies H,Teague J,Stevens C,O'Meara S,Smith R,Parker A,Barthorpe A,Blow M,Brackenbury L,Butler A,Clarke O,Cole J,Dicks E,Dike A,Drozd A,Edwards K,Forbes S,Foster R,Gray K,Greenman C,Halliday K,Hills K,Kosmidou V,Lugg R,Menzies A,Perry J,Petty R,Raine K,Ratford L,Shepherd R,Small A,Stephens Y,Tofts C,Varian J,West S,Widaa S,Yates A,Brasseur F,Cooper CS,Flanagan AM,Knowles M,Leung SY,Louis DN,Looijenga LH,Malkowicz B,Pierotti MA,Teh B,Chenevix-Trench G,Weber BL,Yuen ST,Harris G,Goldstraw P,Nicholson AG,Futreal PA,Wooster R,Stratton MR. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 2004; 431: 525–526.
- 30 Bardelli A,Parsons DW,Silliman N,Ptak J,Szabo S,Saha S,Markowitz S,Willson JK,Parmigiani G,Kinzler KW,Vogelstein B,Velculescu VE. Mutational analysis of the tyrosine kinome in colorectal cancers. Science 2003; 300: 949.
- 31 Davies H,Hunter C,Smith R,Stephens P,Greenman C,Bignell G,Teague J,Butler A,Edkins S,Stevens C,Parker A,O'Meara S,Avis T,Barthorpe S,Brackenbury L,Buck G,Clements J,Cole J,Dicks E,Edwards K,Forbes S,Gorton M,Gray K,Halliday K,Harrison R,Hills K,Hinton J,Jones D,Kosmidou V,Laman R,Lugg R,Menzies A,Perry J,Petty R,Raine K,Shepherd R,Small A,Solomon H,Stephens Y,Tofts C,Varian J,Webb A,West S,Widaa S,Yates A,Brasseur F,Cooper CS,Flanagan AM,Green A,Knowles M,Leung SY,Looijenga LH,Malkowicz B,Pierotti MA,Teh BT,Yuen ST,Lakhani SR,Easton DF,Weber BL,Goldstraw P,Nicholson AG,Wooster R,Stratton MR,Futreal PA. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res 2005; 65: 7591–7595.
- 32 Torkamani A,Schork NJ. Prediction of cancer driver mutations in protein kinases. Cancer Res 2008; 68: 1675–1682.
- 33 Torkamani A,Verkhivker G,Schork NJ. Cancer driver mutations in protein kinase genes. Cancer Lett 2008; 281: 117–127.
- 34 Awan A,Bari H,Yan F,Moksong S,Yang S,Chowdhury S,Cui Q,Yu Z,Purisima EO,Wang E. Regulatory network motifs and hotspots of cancer genes in a mammalian cellular signalling network. IET Syst Biol 2007; 1: 292–297.
- 35 Ferrer-Costa C,Orozco M,de la Cruz X. Characterization of disease-associated single amino acid polymorphisms in terms of sequence and structure properties. J Mol Biol 2002; 315: 771–786.
- 36 Worth CL,Bickerton GR,Schreyer A,Forman JR,Cheng TM,Lee S,Gong S,Burke DF,Blundell TL. A structural bioinformatics approach to the analysis of nonsynonymous single nucleotide polymorphisms (nsSNPs) and their relation to disease. J Bioinformatics Comput Biol 2007; 5: 1297–1318.
- 37 Steward RE,MacArthur MW,Laskowski RA,Thornton JM. Molecular basis of inherited diseases: a structural perspective. Trends Genet 2003; 19: 505–513.
- 38 Khan S,Vihinen M. Spectrum of disease-causing mutations in protein secondary structures. BMC Struct Biol 2007; 7: 56.
- 39 Torkamani A,Schork NJ. Distribution analysis of nonsynonymous polymorphisms within the human kinase gene family. Genomics 2007; 90: 49–58.
- 40 Torkamani A,Schork NJ. Accurate prediction of deleterious protein kinase polymorphisms. Bioinformatics 2007; 23: 2918–2925.
- 41 Torkamani A,Kannan N,Taylor SS,Schork NJ. Congenital disease SNPs target lineage specific structural elements in protein kinases. Proc Natl Acad Sci USA 2008; 105: 9011–9016.
- 42 Lee A,Rana BK,Schiffer HH,Schork NJ,Brann MR,Insel PA,Weiner DM. Distribution analysis of nonsynonymous polymorphisms within the G-protein-coupled receptor gene family. Genomics 2003; 81: 245–248.
- 43 Dixit A,Torkamani A,Schork NJ,Verkhivker G. Computational modeling of structurally conserved cancer mutations in the RET and MET kinases: the impact on protein structure, dynamics, and stability. Biophys J 2009; 96: 858–874.
- 44 Wood LD,Parsons DW,Jones S,Lin J,Sjoblom T,Leary RJ,Shen D,Boca SM,Barber T,Ptak J,Silliman N,Szabo S,Dezso Z,Ustyanksky V,Nikolskaya T,Nikolsky Y,Karchin R,Wilson PA,Kaminker JS,Zhang Z,Croshaw R,Willis J,Dawson D,Shipitsin M,Willson JK,Sukumar S,Polyak K,Park BH,Pethiyagoda CL,Pant PV,Ballinger DG,Sparks AB,Hartigan J,Smith DR,Suh E,Papadopoulos N,Buckhaults P,Markowitz SD,Parmigiani G,Kinzler KW,Velculescu VE,Vogelstein B. The genomic landscapes of human breast and colorectal cancers. Science 2007; 318: 1108–1113.
- 45 Greenman C,Stephens P,Smith R,Dalgliesh GL,Hunter C,Bignell G,Davies H,Teague J,Butler A,Stevens C,Edkins S,O'Meara S,Vastrik I,Schmidt EE,Avis T,Barthorpe S,Bhamra G,Buck G,Choudhury B,Clements J,Cole J,Dicks E,Forbes S,Gray K,Halliday K,Harrison R,Hills K,Hinton J,Jenkinson A,Jones D,Menzies A,Mironenko T,Perry J,Raine K,Richardson D,Shepherd R,Small A,Tofts C,Varian J,Webb T,West S,Widaa S,Yates A,Cahill DP,Louis DN,Goldstraw P,Nicholson AG,Brasseur F,Looijenga L,Weber BL,Chiew YE,DeFazio A,Greaves MF,Green AR,Campbell P,Birney E,Easton DF,Chenevix-Trench G,Tan MH,Khoo SK,Teh BT,Yuen ST,Leung SY,Wooster R,Futreal PA,Stratton MR. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446: 153–158.
- 46 Flicek P,Aken BL,Beal K,Ballester B,Caccamo M,Chen Y,Clarke L,Coates G,Cunningham F,Cutts T,Down T,Dyer SC,Eyre T,Fitzgerald S,Fernandez-Banet J,Gräf S,Haider S,Hammond M,Holland R,Howe KL,Howe K,Johnson N,Jenkinson A,Kähäri A,Keefe D,Kokocinski F,Kulesha E,Lawson D,Longden I,Megy K,Meidl P,Overduin B,Parker A,Pritchard B,Prlic A,Rice S,Rios D,Schuster M,Sealy I,Slater G,Smedley D,Spudich G,Trevanion S,Vilella AJ,Vogel J,White S,Wood M,Birney E,Cox T,Curwen V,Durbin R,Fernandez-Suarez XM,Herrero J,Hubbard TJP,Kasprzyk A,Proctor G,Smith J,Ureta-Vidal A,Searle S. Ensembl 2008. Nucleic Acids Res 2008; 36(Database issue): D707–D714.
- 47 Talavera D,Laskowski RA,Thornton JM. WSsas: a web service for the annotation of functional residues through structural homologues. Bioinformatics 2009; 25: 1192–1194.
- 48 Pearson WR,Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad SciUSA 1988; 85: 2444–2448.
- 49 Berman HM,Westbrook J,Feng Z,Gilliland G,Bhat TN,Weissig H,Shindyalov IN,Bourne PE. The Protein Data Bank. Nucleic Acids Res 2000; 28: 235–242.
- 50 Laskowski RA,Chistyakov VV,Thornton JM. PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res 2005; 33(Database issue): D266–D268.
- 51 Abagyan RA,Totrov MM,Kuznetsov DA. Icm: a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comp Chem 1994; 15: 488–506.
- 52 Vilella AJ,Severin J,Ureta-Vidal A,Heng L,Durbin R,Birney E. EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 2009; 19: 327–335.
- 53 Edgar RC. MUSCLE. Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792–1797.
- 54 Pei J,Grishin NV. AL2CO: calculation of positional conservation in a protein sequence alignment. Bioinformatics 2001; 17: 700–712.
- 55 Kent WJ,Sugnet CW,Furey TS,Roskin KM,Pringle TH,Zahler AM,Haussler D. The human genome browser at UCSC. Genome Res 2002; 12: 996–1006.
- 56 Schwartz S,Kent WJ,Smit A,Zhang Z,Baertsch R,Hardison RC,Haussler D,Miller W. Human-mouse alignments with BLASTZ. Genome Res 2003; 13: 103–107.
- 57 Takata Y,Hamada D,Miyatake K,Nakano S,Shinomiya F,Scafe CR,Reeve VM,Osabe D,Moritani M,Kunika K,Kamatani N,Inoue H,Yasui N,Itakura M. Genetic association between the PRKCH gene encoding protein kinase Ceta isozyme and rheumatoid arthritis in the Japanese population. Arthritis Rheum 2007; 56: 30–42.
- 58 Kubo M,Hata J,Ninomiya T,Matsuda K,Yonemoto K,Nakano T,Matsushita T,Yamazaki K,Ohnishi Y,Saito S,Kitazono T,Ibayashi S,Sueishi K,Iida M,Nakamura Y,Kiyohara Y. A nonsynonymous SNP in PRKCH (protein kinase C eta) increases the risk of cerebral infarction. Nat Genet 2007; 39: 212–217.
- 59 Ferrer-Costa C,Orozco M,de la Cruz X. Characterization of compensated mutations in terms of structural and physico-chemical properties. J Mol Biol 2007; 365: 249–256.
- 60 Polak P,Arndt PF. Transcription induces strand-specific mutations at the 5′ end of human genes. Genome Res 2008; 18: 1216–1223.
- 61 Al-Shahrour F,Minguez P,Tárraga J,Montaner D,Alloza E,Vaquerizas JM,Conde L,Blaschke C,Vera J,Dopazo J. BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments. Nucleic Acids Res 2006; 34(Web Server issue): W472–W476.
- 62 Vogelstein B,Kinzler KW. Cancer genes and the pathways they control. Nature Med 2004; 10: 789–799.
- 63 Valdar W,Solberg LC,Gauguier D,Cookson WO,Rawlins JN,Mott R,Flint J. Genetic and environmental effects on complex traits in mice. Genetics 2006; 174: 959–984.
- 64 Chen M,Kendziorski C. A statistical framework for expression quantitative trait loci mapping. Genetics 2007; 177: 761–771.
- 65 Nowell PC. Tumor progression: a brief historical perspective. Semin Cancer Biol 2002; 12: 261–266.
- 66 Nikolsky Y,Sviridov E,Yao J,Dosymbekov D,Ustyansky V,Kaznacheev V,Dezso Z,Mulvey L,Macconaill LE,Winckler W,Serebryiskaya T,Nikolskaya T,Polyak K. Genome-wide functional synergy between amplified and mutated genes in human breast cancer. Cancer Res 2008; 68: 9532–9540.
- 67 Velculescu VE. Defining the blueprint of the cancer genome. Carcinogenesis 2008; 29: 1087–1091.
- 68 Rahman N,Scott RH. Cancer genes associated with phenotypes in monoallelic and biallelic mutation carriers: new lessons from old players. Human Mol Gene 2007; 16 Spec No 1: R60–R66.
- 69 Bjerkvig R,Tysnes BB,Aboody KS,Najbauer J,Terzis AJ. The origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 2005; 5: 899–904.
- 70 Wren BG. The origin of breast cancer. Menopause 2007; 14: 1060–1068.
- 71 Odoux C,Fohrer H,Hoppo T,Guzik L,Stolz DB,Lewis DW,Gollin SM,Gamblin TC,Geller DA,Lagasse E. A stochastic model for cancer stem cell origin in metastatic colon cancer. Cancer Res 2008; 68: 6932–6941.
- 72 Margulis L. Symbiotic theory of the origin of eukaryotic organelles; criteria for proof. Symp Soc Exp Biol 1975; 29: 21–38.
- 73 Margulis L,Bermudes D. Symbiosis as a mechanism of evolution: status of cell symbiosis theory. Symbiosis 1985; 1: 101–124.
- 74 Bissell MJ,Radisky D. Putting tumours in context. Nat Rev Cancer 2001; 1: 46–54.
- 75 Breivik J. The evolutionary origin of genetic instability in cancer development. Semin Cancer Biol 2005; 15: 51–60.
- 76 Palumbi SR. Humans as the world's greatest evolutionary force. Science 2001; 293: 1786–1790.
- 77 Kersun LS,Wimmer RS,Hoot AC,Meadows AT. Secondary malignant neoplasms of the bladder after cyclophosphamide treatment for childhood acute lymphocytic leukemia. Pediatr Blood Cancer 2004; 42: 289–291.
- 78 Perona R,Sanchez-Perez I. Control of oncogenesis and cancer therapy resistance. Br J Cancer 2004; 90: 573–577.
- 79 Rodin SN,Rodin AS. Human lung cancer and p53: the interplay between mutagenesis and selection. Proc Natl Acad Sci USA 2000; 97: 12244–12249.
- 80 Breivik J,Gaudernack G. Resolving the evolutionary paradox of genetic instability: a cost-benefit analysis of DNA repair in changing environments. FEBS Lett 2004; 563: 7–12.