Colloidal Flower-Shaped Iron Oxide Nanoparticles: Synthesis Strategies and Coatings
Corresponding Author
Helena Gavilán
Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
E-mail: [email protected], [email protected]Search for more papers by this authorAnja Kowalski
Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, D-18119 Rostock, Germany
Search for more papers by this authorAbhilash Sugunan
The Swedish Research Institute, Box 5607, SE-114 86 Stockholm, Sweden
Search for more papers by this authorJens Sommertune
The Swedish Research Institute, Box 5607, SE-114 86 Stockholm, Sweden
Search for more papers by this authorMiriam Varón
Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kongens Lyngby, Denmark
Search for more papers by this authorLara K. Bogart
Healthcare Biomagnetics Laboratory, University College of London, 21 Albemarle Street, London, W1S 4BS UK
Search for more papers by this authorOliver Posth
Physikalisch-Technische Bundesanstalt, Abbestr. 2–12, 10587 Berlin, Germany
Search for more papers by this authorLunjie Zeng
Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
Search for more papers by this authorDavid González-Alonso
Department of CITIMAC, University of Cantabria, 39005 Santander, Spain
Search for more papers by this authorChristoph Balceris
Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, 38106 Braunschweig, Germany
Search for more papers by this authorJeppe Fock
Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
Search for more papers by this authorErik Wetterskog
Department of Engineering Sciences, Ångström Laboratory, Uppsala University, SE-75121 Uppsala, Sweden
Search for more papers by this authorCathrine Frandsen
Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kongens Lyngby, Denmark
Search for more papers by this authorCordula Grüttner
Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, D-18119 Rostock, Germany
Search for more papers by this authorAndrea Fornara
The Swedish Research Institute, Box 5607, SE-114 86 Stockholm, Sweden
Search for more papers by this authorFrank Ludwig
Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, 38106 Braunschweig, Germany
Search for more papers by this authorSabino Veintemillas-Verdaguer
Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
Search for more papers by this authorChrister Johansson
RISE Acreo, P.O. Box 53071, SE-40014 Göteborg, Sweden
Search for more papers by this authorCorresponding Author
M. Puerto Morales
Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Helena Gavilán
Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
E-mail: [email protected], [email protected]Search for more papers by this authorAnja Kowalski
Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, D-18119 Rostock, Germany
Search for more papers by this authorAbhilash Sugunan
The Swedish Research Institute, Box 5607, SE-114 86 Stockholm, Sweden
Search for more papers by this authorJens Sommertune
The Swedish Research Institute, Box 5607, SE-114 86 Stockholm, Sweden
Search for more papers by this authorMiriam Varón
Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kongens Lyngby, Denmark
Search for more papers by this authorLara K. Bogart
Healthcare Biomagnetics Laboratory, University College of London, 21 Albemarle Street, London, W1S 4BS UK
Search for more papers by this authorOliver Posth
Physikalisch-Technische Bundesanstalt, Abbestr. 2–12, 10587 Berlin, Germany
Search for more papers by this authorLunjie Zeng
Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
Search for more papers by this authorDavid González-Alonso
Department of CITIMAC, University of Cantabria, 39005 Santander, Spain
Search for more papers by this authorChristoph Balceris
Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, 38106 Braunschweig, Germany
Search for more papers by this authorJeppe Fock
Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
Search for more papers by this authorErik Wetterskog
Department of Engineering Sciences, Ångström Laboratory, Uppsala University, SE-75121 Uppsala, Sweden
Search for more papers by this authorCathrine Frandsen
Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kongens Lyngby, Denmark
Search for more papers by this authorCordula Grüttner
Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, D-18119 Rostock, Germany
Search for more papers by this authorAndrea Fornara
The Swedish Research Institute, Box 5607, SE-114 86 Stockholm, Sweden
Search for more papers by this authorFrank Ludwig
Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, 38106 Braunschweig, Germany
Search for more papers by this authorSabino Veintemillas-Verdaguer
Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
Search for more papers by this authorChrister Johansson
RISE Acreo, P.O. Box 53071, SE-40014 Göteborg, Sweden
Search for more papers by this authorCorresponding Author
M. Puerto Morales
Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
The assembly of magnetic cores into regular structures may notably influence the properties displayed by a magnetic colloid. Here, key synthesis parameters driving the self-assembly process capable of organizing colloidal magnetic cores into highly regular and reproducible multi-core nanoparticles are determined. In addition, a self-consistent picture that explains the collective magnetic properties exhibited by these complex assemblies is achieved through structural, colloidal, and magnetic means. For this purpose, different strategies to obtain flower-shaped iron oxide assemblies in the size range 25–100 nm are examined. The routes are based on the partial oxidation of Fe(OH)2, polyol-mediated synthesis or the reduction of iron acetylacetonate. The nanoparticles are functionalized either with dextran, citric acid, or alternatively embedded in polystyrene and their long-term stability is assessed. The core size is measured, calculated, and modeled using both structural and magnetic means, while the Debye model and multi-core extended model are used to study interparticle interactions. This is the first step toward standardized protocols of synthesis and characterization of flower-shaped nanoparticles.
Supporting Information
Filename | Description |
---|---|
ppsc201700094-sup-0001-S1.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. Xing, Y. Zhao, Adv. Mater. 2016, 28, 73049.
- 2S. Pan, L. He, J. Peng, F. Qiu, Z. Lin, Angew. Chem. 2016, 30, 8459.
- 3M. Volkmann, M. Meyns, R. Lesyuk, H. Lehmann, C. Klinke, Chem. Mater. 2016, 29, 726.
- 4V. Sayevich, B. Cai, A. Benad, D. Haubold, L. Sonntag, N. Gaponik, V. Lesnyak, A. Eychmüller, Angew. Chem., Int. Ed. 2016, 55, 6334.
- 5J. K. Stolarczyk, A. Deak, D. F. Brougham, Adv. Mater. 2016, 28, 5400.
- 6Z. Nie, A. Petukhova, E. Kumacheva, Nat. Nanotechnol. 2010, 5, 15.
- 7J. J. De Yoreo, P. U. Gilbert, N. A. Sommerdijk, R. L. Penn, S. Whitelam, D. Joester, H. Zhang, J. D. Rimer, A. Navrotsky, J. F. Banfield, Science 2015, 349, aaa6760.
- 8M. Ocaña, R. Rodríguez-Clemente, C. J. Serna, Adv. Mater. 1995, 7, 212.
- 9M. Raju, A. C. Van Duin, K. A. Fichthorn, Nano letters 2014, 14, 1836.
- 10C. Frandsen, B. A. Legg, L. R. Comolli, H. Zhang, B. Gilbert, E. Johnson, J. F. Banfield, CrystEngComm 2014, 16, 1451.
- 11M. B. Bannwarth, S. W. Kazer, S. Ulrich, G. Glasser, D. Crespy, K. Landfester, Angew. Chem., Int. Ed. 2013, 52, 10107.
- 12B. Ingham, T. H. Lim, C. J. Dotzler, A. Henning, M. F. Toney, R. D. Tilley, Chem. Mater. 2011, 23, 3312.
- 13S. Dutz, IEEE Trans. Magn. 2016, 52, 1.
- 14D. Serantes, K. Simeonidis, M. Angelakeris, O. Chubykalo-Fesenko, M. Marciello, M. P. Morales, D. Baldomir, C. Martinez-Boubeta, J. Phys. Chem. C 2014, 118, 5927.
- 15U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, Adv. Mater. 2007, 19, 33.
- 16L. Gutiérrez, R. Costo, C. Grüttner, F. Westphal, N. Gehrke, D. Heinke, A. Fornara, Q. Pankhurst, C. Johansson, S. Veintemillas-Verdaguer, M. P. Morales, Dalton Trans. 2015, 44, 2943.
- 17M. A. Gijs, F. Lacharme, U. Lehmann, Chem. Rev. 2009, 110, 1518.
- 18J. Nowak, F. Wiekhorst, L. Trahms, S. Odenbach, J. Phys.: Condens. Matter 2014, 26, 176004.
- 19M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, A. Petri-Fink, Chem. Rev. 2011, 112, 2323.
- 20S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R. N. Muller, Chem. Rev. 2008, 108, 2064.
- 21D. Eberbeck, C. L. Dennis, N. F. Huls, K. L. Krycka, C. Gruttner, F. Westphal, IEEE Trans. Magn. 2013, 49, 269.
- 22C. Grüttner, K. Müller, J. Teller, F. Westphal, Int. J. Hyperthermia 2013, 29, 777.
- 23S. Dutz, M. Kettering, I. Hilger, R. Müller, M. Zeisberger, Nanotechnology 2011, 22, 265102.
- 24L. Lartigue, P. Hugounenq, D. Alloyeau, S. P. Clarke, M. Lévy, J.-C. Bacri, R. Bazzi, D. F. Brougham, C. Wilhelm, F. Gazeau, ACS Nano 2012, 6, 10935.
- 25C. Alexiou, W. Arnold, R. J. Klein, F. G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, A. S. Luebbe, Cancer Red. 2000, 60, 6641.
- 26N. C. Bigall, C. Wilhelm, M.-L. Beoutis, M. García-Hernandez, A. A. Khan, C. Giannini, A. Sánchez-Ferrer, R. Mezzenga, M. E. Materia, M. A. Garcia, Chem. Mater. 2013, 25, 1055.
- 27G. Zoppellaro, A. Kolokithas-Ntoukas, K. Polakova, J. Tucek, R. Zboril, G. Loudos, E. Fragogeorgi, C. Diwoky, K. Tomankova, K. Avgoustakis, Chem. Mater. 2014, 26, 2062.
- 28F. Mazuel, A. Espinosa, G. Radtke, M. Bugnet, S. Neveu, Y. Lalatonne, G. A. Botton, A. Abou-Hassan, C. Wilhelm, Adv. Funct. Mater. 2017, 27, 1605997.
- 29F. Ludwig, O. Kazakova, L. F. Barquín, A. Fornara, L. Trahms, U. Steinhoff, P. Svedlindh, E. Wetterskog, Q. A. Pankhurst, P. Southern, M. P. Morales, M. F. Hansen, C. Frandsen, E. Olsson, S. Gustafsson, N. Gehrke, K. Lüdtke-Buzug, C. Grüttner, C. Jonasson, C. Johansson, IEEE Trans. Magn. 2014, 50, 5300204.
- 30P. Mulvaney, W. J. Parak, F. Caruso, P. S. Weiss, ACS Nano 2016, 10, 9763.
- 31V. Schaller, G. Wahnström, A. Sanz-Velasco, P. Enoksson, C. Johansson, AIP Conf. Proc. 2010, 1311, 42.
- 32B. L. Frankamp, A. K. Boal, M. T. Tuominen, V. M. Rotello, J. Am. Chem. Soc. 2005, 127, 9731.
- 33R. A. Bohara, N. D. Thorat, S. H. Pawar, RSC Adv. 2016, 6, 43989.
- 34T. Sugimoto, E. Matijević, J. Colloid Interface Sci. 1980, 74, 227.
- 35F. Vereda, J. de Vicente, M. P. Morales, F. Rull, R. Hidalgo-Álvarez, J. Phys. Chem. C 2008, 112, 5843.
- 36G. A. Parks, Chem. Rev. 1965, 65, 177.
- 37M. A. Vergés, R. Costo, A. Roca, J. Marco, G. Goya, C. Serna, M. P. Morales, J. Phys. D: Appl. Phys. 2008, 41, 134003.
- 38Y. Luengo, M. P. Morales, L. Gutiérrez, S. Veintemillas-Verdaguer, J. Mater. Chem. C 2016, 4, 9482.
- 39M. Bautista, O. Bomati-Miguel, X. Zhao, M. P. Morales, T. Gonzalez-Carreño, R. P. de Alejo, J. Ruiz-Cabello, S. Veintemillas-Verdaguer, Nanotechnology 2004, 15, S154.
- 40H. Dong, Y.-C. Chen, C. Feldmann, Green Chem. 2015, 17, 4107.
- 41D. Caruntu, G. Caruntu, C. J. O'Connor, J. Phys. D: Appl. Phys. 2007, 40, 5801.
- 42J. Ge, Y. Hu, M. Biasini, W. P. Beyermann, Y. Yin, Angew. Chem., Int. Ed. 2007, 46, 4342.
- 43P. Hugounenq, M. Levy, D. Alloyeau, L. Lartigue, E. Dubois, V. r. Cabuil, C. Ricolleau, S. p. Roux, C. Wilhelm, F. Gazeau, J. Phys. Chem. C 2012, 116, 15702.
- 44W. Cai, J. Wan, J. Colloid Interface Sci. 2007, 305, 366.
- 45H.-L. Liu, S. P. Ko, J.-H. Wu, M.-H. Jung, J. H. Min, J. H. Lee, B. H. An, Y. K. Kim, J. Magn. Magn. Mater. 2007, 310, 815.
- 46J. Liu, Z. Sun, Y. Deng, Y. Zou, C. Li, X. Guo, L. Xiong, Y. Gao, F. Li, D. Zhao, Angew. Chem. 2009, 121, 5989.
- 47Q. Sun, Z. Ren, R. Wang, W. Chen, C. Chen, J. Nanopart. Res. 2011, 13, 213.
- 48Y. Sahoo, A. Goodarzi, M. T. Swihart, T. Y. Ohulchanskyy, N. Kaur, E. P. Furlani, P. N. Prasad, J. Phys. Chem. B 2005, 109, 3879.
- 49F. Vereda, M. P. Morales, B. Rodríguez-González, J. de Vicente, R. Hidalgo-Alvarez, CrystEngComm 2013, 15, 5236.
- 50C. Cheng, F. Xu, H. Gu, New J. Chem. 2011, 35, 1072.
- 51J. Sommertune, A. Sugunan, A. Ahniyaz, R. S. Bejhed, A. Sarwe, C. Johansson, C. Balceris, F. Ludwig, O. Posth, A. Fornara, Int. J. Mol. Sci. 2015, 16, 19752.
- 52V. Yathindranath, L. Rebbouh, D. F. Moore, D. W. Miller, J. van Lierop, T. Hegmann, Adv. Funct. Mater. 2011, 21, 1457.
- 53T. Yonezawa, K. Kamoshita, M. Tanaka, T. Kinoshita, Jpn. J. Appl. Phys. 2008, 47, 1389.
- 54H. Okudera, K. Kihara, T. Matsumoto, Acta Crystallogr. Sect. B: Struct. Sci. 1996, 52, 450.
- 55C. Pecharromán, T. Gonzalez-Carreno, J. E. Iglesias, Phys. Chem. Miner. 1995, 22, 21.
- 56C. Frandsen, S. Mørup, Phys. Rev. Lett. 2005, 94, 027202.
- 57J. Fock, L. K. Bogart, O. Posth, M. F. Hansen, Q. A. Pankhurst, C. Frandsen, Hyperfine Interactions 2016, 237, 1.
- 58M. P. Morales, S. Veintemillas-Verdaguer, M. Montero, C. Serna, A. Roig, L. Casas, B. Martínez, F. Sandiumenge, Chem. Mater. 1999, 11, 3058.
- 59S.-H. Chung, A. Hoffmann, K. Guslienko, S. Bader, C. Liu, B. Kay, L. Makowski, L. Chen, J. Appl. Phys. 2005, 97, 10R101.
- 60S. Bogren, A. Fornara, F. Ludwig, M. P. Morales, U. Steinhoff, M. F. Hansen, O. Kazakova, C. Johansson, Int. J. Mol. Sci. 2015, 16, 20308.
- 61F. Ludwig, T. Wawrzik, T. Yoshida, N. Gehrke, A. Briel, D. Eberbeck, M. Schilling, IEEE Trans. Magn. 2012, 48, 3780.
- 62M. Shliomis, V. Stepanov, Adv. Chem. Phys. 1994, 87, 1.
- 63F. Ahrentorp, A. P. Astalan, C. Jonasson, J. Blomgren, O. T. Mefford, M. Yan, J. Cuortais, J. F. Berret, J. Fresnais, O. Sandre, S. Dutz, R. Müller, C. Johansson, in AIP Conf. Proc. 2010, 1311, 213.
- 64P. Svedlindh, T. Jonsson, J. García-Palacios, J. Magn. Magn. Mater. 1997, 169, 323.
- 65D. Parker, I. Lisiecki, M. Pileni, J. Phys. Chem. Lett. 2010, 1, 1139.
- 66N. Gehrke, D. Heinke, D. Eberbeck, F. Ludwig, T. Wawrzik, C. Kuhlmann, A. Briel, IEEE Trans. Magn. 2015, 51, 1.
- 67M. Wabler, W. Zhu, M. Hedayati, A. Attaluri, H. Zhou, J. Mihalic, A. Geyh, T. L. DeWeese, R. Ivkov, D. Artemov, Int. J. Hyperthermia 2014, 30, 192.
- 68J. Rodríguez-Carvajal, Comm. Powder Diffr. (IUCr). Newsletter 2001, 26, 12.
- 69J. Fock, L. K. Bogart, D. Gonzalez-Alonzo, J. I. E. Martinez, M. F. Hansen, M. Varon, C. Frandsen, Q. A. Pankhurst, Unpublished.
- 70F. Ludwig, A. Guillaume, M. Schilling, N. Frickel, A. Schmidt, J. Appl. Phys. 2010, 108, 033918.