Liquid-Crystal-Mediated Self-Assembly of Porous α-Fe2O3 Nanorods on PEDOT:PSS-Functionalized Graphene as a Flexible Ternary Architecture for Capacitive Energy Storage
Md. Monirul Islam
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500 Australia
Search for more papers by this authorDean Cardillo
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500 Australia
Search for more papers by this authorTaslima Akhter
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500 Australia
Search for more papers by this authorSeyed Hamed Aboutalebi
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500 Australia
Present address: Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, 19395-5531, Tehran, Iran
Search for more papers by this authorHua Kun Liu
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500 Australia
Search for more papers by this authorCorresponding Author
Konstantin Konstantinov
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500 Australia
E-mail: [email protected]Search for more papers by this authorShi Xue Dou
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500 Australia
Search for more papers by this authorMd. Monirul Islam
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500 Australia
Search for more papers by this authorDean Cardillo
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500 Australia
Search for more papers by this authorTaslima Akhter
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500 Australia
Search for more papers by this authorSeyed Hamed Aboutalebi
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500 Australia
Present address: Condensed Matter National Laboratory, Institute for Research in Fundamental Sciences, 19395-5531, Tehran, Iran
Search for more papers by this authorHua Kun Liu
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500 Australia
Search for more papers by this authorCorresponding Author
Konstantin Konstantinov
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500 Australia
E-mail: [email protected]Search for more papers by this authorShi Xue Dou
Institute for Superconducting and Electronic Materials (ISEM), Australian Institute for Innovative Materials (AIIM) Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500 Australia
Search for more papers by this authorAbstract
A novel aqueous-based self-assembly approach to a composite of iron oxide nanorods on conductive-polymer (CP)-functionalized, ultralarge graphene oxide (GO) liquid crystals (LCs) is demonstrated here for the fabrication of a flexible hybrid material for charge capacitive application. Uniform decoration of α-Fe2O3 nanorods on a poly(3,4-ethylene-dioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)-functionalized, ultralarge GO scaffold results in a 3D interconnected layer-by-layer (LBL) architecture. This advanced interpenetrating network of ternary components is lightweight, foldable, and possesses highly conductive pathways for facile ion transportation and charge storage, making it promising for high-performance energy-storage applications. Having such structural merits and good synergistic effects, the flexible architecture exhibits a high specific discharge capacitance of 875 F g−1 and excellent volumetric specific capacitance of 868 F cm−3 at 5 mV s−1, as well as a promising energy density of 118 W h kg−1 (at 0.5 A g−1) and promising cyclability, with capacity retention of 100% after 5000 charge–discharge (CD) cycles. This synthesis method provides a simple, yet efficient approach for the solution-processed LBL insertion of the hematite nanorods (HNR) into CP-functionalized novel composite structure. It provides great promise for the fabrication of a variety of metal-oxide (MO)-nanomaterial-based binder and current collector-free flexible composite electrodes for high-performance energy-storage applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ppsc201500150-sup-0001-S1.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) M. Armand, J. M. Tarascon, Nature 2008, 451, 652; b) J. A. Rogers, Y. Huang, Proc. Natl. Acad. Sci. USA 2009, 106, 10875; c) D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Nat. Nanotechnol. 2010, 5, 651; d) K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, A. Javey, Nat. Mater. 2010, 9, 821; e) Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X. C. Adroher, Appl. Energy 2011, 88, 981.
- 2a) X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Science 2013, 341, 534; b) M. Kim, C. Lee, J. Jang. Adv. Funct. Mater. 2014, 24, 2489; c) J. Liu, L. Zhang, H. B. Wu, J. Lin, Z. Shen, X. W. D. Lou, Energy Environ. Sci. 2014, 7, 3709.
- 3a) M. Olek, J. Ostrander, S. Jurga, H. Möhwald, N. Kotov, K. Kempa, M. Giersig, Nano Lett. 2004, 4, 1889; b) Z.-D. Huang, B. Zhang, R. Liang, Q.-B. Zheng, S. W. Oh, X.-Y. Lin, N. Yousefi, J.-K. Kim, Carbon 2012, 50, 4239; c) M. K. Shin, B. Lee, S. H. Kim, J. A. Lee, G. M. Spinks, S. Gambhir, G. G. Wallace, M. E. Kozlov, R. H. Baughman, S. J. Kim, Nat. Commun. 2012, 3, 650.
- 4a) A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183; b) M. F. El-Kady, V. Strong, S. Dubin, R. B. Kaner, Science 2012, 335, 1326; c) Z.-S. Wu, Y. Sun, Y.-Z. Tan, S. Yang, X. Feng, K. Müllen, J. Am. Chem. Soc. 2012, 134, 19532; d) R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater. 2015, 14, 271; e) F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, V. Pellegrini, Science 2015, 347, 1246501; f) A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, J. Kinaret, Nanoscale 2015, 7, 4598; g) Y. Shao, M. F. El-Kady, L. J. Wang, Q. Zhang, Y. Li, H. Wang, M. F. Mousavi, R. B. Kaner, Chem. Soc. Rev. 2015, 44, 3639; h) Y. Xu, G. Shi, X. Duan, Acc. Chem. Res. 2015, 48, 1666.
- 5S. H. Aboutalebi, A. T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H. K. Liu, S. X. Dou, Energy Environ. Sci. 2011, 4, 1855.
- 6a) M. Pumera, Energy Environ. Sci. 2011, 4, 668; b) Y. Huang, J. Liang, Y. Chen, Small 2012, 8, 1805.
- 7R. Jalili, S. H. Aboutalebi, D. Esrafilzadeh, K. Konstantinov, S. E. Moulton, J. M. Razal, G. G. Wallace, ACS Nano 2013, 7, 3981.
- 8a) J. Zhang, X. Zhao, J. Phys. Chem. C 2012, 116, 5420; b) H.-P. Cong, X.-C. Ren, P. Wang, S.-H. Yu, Energy Environ. Sci. 2013, 6, 1185; c) Y. Sun, G. Shi, J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 231; d) Y. Zhao, J. Liu, Y. Hu, H. Cheng, C. Hu, C. Jiang, L. Jiang, A. Cao, L. Qu, Adv. Mater. 2013, 25, 591.
- 9M. Islam, A. Chidembo, H. Aboutalebi, D. Cardillo, H. K. Liu, K. Konstantinov, S. X. Dou, Front. Energy Res. 2014, 2, 31.
10.3389/fenrg.2014.00031 Google Scholar
- 10M. M. Islam, S. H. Aboutalebi, D. Cardillo, H. K. Liu, K. Konstantinov, S. X. Dou, ACS Cent. Sci. 2015, 1, 206.
- 11A. Chidembo, S. H. Aboutalebi, K. Konstantinov, M. Salari, B. Winton, S. A. Yamini, I. P. Nevirkovets, H. K. Liu, Energy Environ. Sci. 2012, 5, 5236.
- 12a) Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Nano Energy 2012, 1, 107; b) G. Abellán, E. Coronado, C. Martí-Gastaldo, A. Ribera, T. F. Otero, Part. Part. Syst. Charact. 2013, 30, 853; c) A. T. Chidembo, S. H. Aboutalebi, K. Konstantinov, D. Wexler, H. K. Liu, S. X. Dou, Part. Part. Syst. Charact. 2014, 31, 465; d) H. Pang, Z. Yan, Y. Wei, X. Li, J. Li, L. Zhang, J. Chen, J. Zhang, H. Zheng, Part. Part. Syst. Charact.. 2013, 30, 287; e) A. Dey, V. Nangare, P. V. More, M. A. Shafeeuulla Khan, P. K. Khanna, A. K. Sikder, S. Chattopadhyay, RSC Adv. 2015, 5, 63777; f) A. Dey, S. Panja, A. K. Sikder, S. Chattopadhyay, RSC Adv. 2015, 5, 10358.
- 13a) Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, ACS Nano 2012, 7, 174; b) M. Li, Z. Tang, M. Leng, J. Xue, Adv. Funct. Mater. 2014, 24, 7495.
- 14J. P. Zheng, T. R. Jow, J. Electrochem. Soc. 1995, 142, L6.
- 15W. Shi, J. Zhu, D. H. Sim, Y. Y. Tay, Z. Lu, X. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H. H. Hng, Q. Yan, J. Mater. Chem. 2011, 21, 3422.
- 16K. K. Lee, S. Deng, H. M. Fan, S. Mhaisalkar, H. R. Tan, E. S. Tok, K. P. Loh, W. S. Chin, C. H. Sow, Nanoscale 2012, 4, 2958.
- 17W.-H. Khoh, J.-D. Hong, Colloids Surf., A 2013, 436, 104.
- 18T. Qi, J. Jiang, H. Chen, H. Wan, L. Miao, L. Zhang, Electrochim. Acta 2013, 114, 674.
- 19W. Yang, Z. Gao, J. Wang, B. Wang, L. Liu, Solid State Sci. 2013, 20, 46.
- 20a) F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, Y. Chen, Energy Environ. Sci. 2013, 6, 1623; b) M. Chen, J. Liu, D. Chao, J. Wang, J. Yin, J. Lin, H. Jin Fan, Z. Xiang Shen, Nano Energy 2014, 9, 364.
- 21Z. Ma, X. Huang, S. Dou, J. Wu, S. Wang, J. Phys. Chem. C 2014, 118, 17231.
- 22B. Sethuraman, K. K. Purushothaman, G. Muralidharan, RSC Adv. 2014, 4, 4631.
- 23Q. Wang, L. Jiao, H. Du, Y. Wang, H. Yuan, J. Power Sources 2014, 245, 101.
- 24D. Wang, Y. Li, Q. Wang, T. Wang, J. Solid State Electrochem. 2012, 16, 2095.
- 25H. Wang, Z. Xu, H. Yi, H. Wei, Z. Guo, X. Wang, Nano Energy 2014, 7, 86.
- 26S. H. Aboutalebi, M. M. Gudarzi, Q. B. Zheng, J.-K. Kim, Adv. Funct. Mater. 2011, 21, 2978.
- 27a) H. K. Bisoyi, S. Kumar, Chem. Soc. Rev. 2011, 40, 306; b) S. H. Aboutalebi, R. Jalili, D. Esrafilzadeh, M. Salari, Z. Gholamvand, S. Aminorroaya Yamini, K. Konstantinov, R. L. Shepherd, J. Chen, S. E. Moulton, P. C. Innis, A. I. Minett, J. M. Razal, G. G. Wallace, ACS Nano 2014, 8, 2456.
- 28A. T. Chidembo, S. H. Aboutalebi, K. Konstantinov, D. Wexler, H. K. Liu, S. X. Dou, Part. Part. Syst Charact. 2014, 31, 465.
- 29K. Jo, T. Lee, H. J. Choi, J. H. Park, D. J. Lee, D. W. Lee, B.-S. Kim, Langmuir 2011, 27, 2014.
- 30A. A. Farah, S. A. Rutledge, A. Schaarschmidt, R. Lai, J. P. Freedman, A. S. Helmy, J. Appl. Phys. 2012, 112, 113709.
- 31D. Cardillo, M. Tehei, M. Lerch, S. Corde, A. Rosenfeld, K. Konstantinov, Mater. Lett. 2014, 117, 279.
- 32Z. Wang, C. Ma, H. Wang, Z. Liu, Z. Hao, J. Alloys Compd. 2013, 552, 486.