Maskless atmospheric pressure PECVD of SiOx films on both planar and nonplanar surfaces using a flexible atmospheric microplasma generation device
Corresponding Author
Tao Wang
School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, China
Correspondence Tao Wang, School of Mechanical Engineering, Anhui University of Technology, 243032 Ma'anshan, China.
Email: [email protected]
Search for more papers by this authorJingquan Liu
Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, China
National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, China
Search for more papers by this authorLiping Shi
School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, China
International Science and Technology Cooperation Base for Intelligent Equipment Manufacturing in Special Service Environment, Ma'anshan, China
Search for more papers by this authorXingquan Zhang
School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, China
Search for more papers by this authorLi Lv
School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, China
Search for more papers by this authorGuotao Zhang
School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, China
Search for more papers by this authorJun Wang
School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, China
Search for more papers by this authorCorresponding Author
Tao Wang
School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, China
Correspondence Tao Wang, School of Mechanical Engineering, Anhui University of Technology, 243032 Ma'anshan, China.
Email: [email protected]
Search for more papers by this authorJingquan Liu
Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, China
National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, China
Search for more papers by this authorLiping Shi
School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, China
International Science and Technology Cooperation Base for Intelligent Equipment Manufacturing in Special Service Environment, Ma'anshan, China
Search for more papers by this authorXingquan Zhang
School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, China
Search for more papers by this authorLi Lv
School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, China
Search for more papers by this authorGuotao Zhang
School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, China
Search for more papers by this authorJun Wang
School of Mechanical Engineering, Anhui University of Technology, Ma'anshan, China
Search for more papers by this authorAbstract
This paper presents the use of a simple-arranged, low-cost, and flexible atmospheric pressure microplasma generation device (μPGD) with controlled gas discharge to achieve maskless atmospheric plasma-enhanced chemical vapor deposition (PECVD) of SiOx films on both planar and nonplanar surfaces. The μPGD is mainly composed of a copper–polyimide–copper sandwich structure with predefined microfluidic channels. Uniform microplasmas of different shapes and dimensions were generated in the open air. SiOx films were masklessly deposited with well-defined edges and good feature transfer fidelity. The SEM, EDS, XPS, and FTIR spectra of the deposited film confirm the SiOx structure. These results indicate that μPGD is able to achieve maskless PECVD of SiOx films in the open air, especially micropatterning on nonplanar surfaces.
REFERENCES
- 1F. Jaehnike, D. V. Pham, R. Anselmann, C. Bock, U. Kunze, ACS Appl. Mater. Interfaces 2015, 7, 14011.
- 2H. Najafi-Ashtiani, Appl. Surf. Sci. 2018, 455, 373.
- 3E. V. Skorb, D. Fix, D. V. Andreeva, H. Möhwald, D. G. Shchukin, Adv. Funct. Mater. 2009, 19, 2373.
- 4J. Y. Kim, A.-Y. Kim, G. Liu, J.-Y. Woo, H. Kim, J. K. Lee, ACS Appl. Mater. Interfaces 2018, 10, 8692.
- 5J. Yan, X. Liao, S. Ji, S. Zhang, J. Microelectromech. Syst. 2018, 28, 1.
- 6W. Huang, S. Li, S. Bouzidi, L. Lei, Z. Zhang, P. Xu, S. G. Cloutier, F. Rosei, R. Nechache, Nanoscale Adv. 2019, 1, 2139.
- 7A. Granier, M. Vervloet, K. Aumaille, C. Vall e, Plasma Sources Sci. Technol. 2003, 12, 89.
- 8O. Gabriel, S. Kirner, M. Klingsporn, F. Friedrich, B. Stannowski, R. Schlatmann, Plasma Processes Polym. 2015, 12, 82.
- 9M. Goujon, T. Belmonte, G. Henrion, Surf. Coat. Technol. 2004, 188, 756.
- 10T. Abuzairi, M. Okada, S. Bhattacharjee, M. Nagatsu, Appl. Surf. Sci. 2016, 390, 489.
- 11G. Kim, S. Park, H. Shin, S. Song, H.-J. Oh, D. H. Ko, J.-I. Choi, S. J. Baik, AIP Adv. 2017, 7, 125310.
- 12F. Hilt, N. Gherardi, D. Duday, A. Berné, P. Choquet, ACS Appl. Mater. Interfaces 2016, 8, 12422.
- 13F. M. Elam, B. C. A. M. van der Velden-Schuermans, S. A. Starostin, M. C. M. van de Sanden, H. W. de Vries, RSC Adv. 2017, 7, 52274.
- 14H. Hamze, M. Jimenez, D. Deresmes, A. Beaurain, N. Nuns, M. Traisnel, Appl. Surf. Sci. 2014, 315, 531.
- 15J. Schäfer, J. Hnilica, J. Šperka, A. Quade, V. Kudrle, R. Foest, J. Vodák, L. Zajίčková, Surf. Coat. Technol. 2016, 295, 112.
- 16Y. Ito, K. Urabe, N. Takano, K. Tachibana, Appl. Phys. Express 2008, 1, 067009.
- 17J. Hnilica, J. Schäfer, R. Foest, L. Zajíčková, J. Phys. D: Appl. Phys. 2013, 46, 335202.
- 18Y.-L. Kuo, K.-H. Chang, Surf. Coat. Technol. 2015, 283, 194.
- 19J. Li, Q. Yuan, X. Chang, Y. Wang, G. Yin, C. Dong, Plasma Sci. Technol. 2017, 19, 045505.
- 20N. Li, Y. L. Wu, J. Hong, I. A. Shchelkanov, D. N. Ruzic, IEEE Trans. Plasma Sci. 2015, 43, 3205.
- 21J. H. Lee, T. T. T. Pham, Y. S. Kim, J. T. Lim, S. J. Kyung, G. Y. Yeom, J. Electrochem. Soc. 2008, 155, D163.
- 22R. Bazinette, J. Paillol, J. F. Lelièvre, F. Massines, Plasma Processes Polym. 2016, 13, 1015.
- 23T. Wang, M. S. Hu, B. Yang, X. L. Wang, J. Q. Liu, presented at 31st IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2018, Belfast, 2018.
- 24Y.-J. Yang, M.-Y. Tsai, W.-C. Liang, H.-Y. Chen, C.-C. Hsu, ACS Appl. Mater. Interfaces 2014, 6, 12550.
- 25R. Brandenburg, J. Ehlbeck, M. Stieber, T. V. Woedtke, J. Zeymer, O. Schlüter, K.-D. Weltmann, Contrib. Plasma Phys. 2007, 47, 72.
- 26T. Oshita, H. Kawano, T. Takamatsu, H. Miyahara, A. Okino, IEEE Trans. Plasma Sci. 2015, 43, 1987.
- 27M. Thiyagarajan, A. Sarani, C. Nicula, J. Appl. Phys. 2013, 113, 1302.
- 28M. Quitzau, M. Wolter, V. Zaporojtchenko, H. Kersten, F. Faupel, Eur. Phys. J 2010, 58, 305.
- 29S. Yonemori, R. Ono, J. Phys. D: Appl. Phys. 2014, 47, 125401.
- 30J. Schäfer, R. Foest, A. Quade, A. Ohl, K.-D. Weltmann, J. Phys. D: Appl. Phys. 2008, 41, 194010.
- 31J. Schäfer, R. Foest, A. Quade, A. Ohl, K.-D. Weltmann, Plasma Processes Polym. 2009, 6, S519.
- 32M. Bashir, S. Bashir, Plasma Chem. Plasma Process. 2015, 35, 739.
- 33J. Hnilica, J. Schäfer, R. Foest, L. Zajíčková, V. Kudrle, J. Phys. D: Appl. Phys. 2013, 46, 335202.
- 34H. Zhang, Z. Guo, Q. Chen, X. Wang, Z. Wang, Z. Liu, Thin Solid Films 2016, 615, 63.
- 35N. E. Blanchard, B. Hanselmann, J. Drosten, M. Heuberger, D. Hegemann, Plasma Processes Polym. 2015, 12, 1.
10.1002/ppap.201570001 Google Scholar