Confinement effects on the structure and dynamics of polymer systems from the mesoscale to the nanoscale
Corresponding Author
M. D. Barnes
Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003Search for more papers by this authorA. Mehta
Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6142
Search for more papers by this authorP. Kumar
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6142
Search for more papers by this authorB. G. Sumpter
Computer Sciences and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6142
Search for more papers by this authorD. W. Noid
Computer Sciences and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6142
Search for more papers by this authorCorresponding Author
M. D. Barnes
Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003Search for more papers by this authorA. Mehta
Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6142
Search for more papers by this authorP. Kumar
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6142
Search for more papers by this authorB. G. Sumpter
Computer Sciences and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6142
Search for more papers by this authorD. W. Noid
Computer Sciences and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6142
Search for more papers by this authorAbstract
In this article, we review some of our recent progress in experimental and simulation methods for generating, characterizing, and modeling polymer microparticles and nanoparticles in a number of polymer and polymer-blend systems. By using instrumentation developed for probing single fluorescent molecules in micrometer-sized liquid droplets, we have shown that polymer particles of nearly arbitrary size and composition can be made with a size dispersion that is ultimately limited by the chain length and number distribution within the droplets. Depending on the timescale for solvent evaporation—a tunable parameter in our experiments—the phase separation of otherwise immiscible polymers can be avoided by confinement effects, and homogeneous polymer-blend microparticles or nanoparticles can be produced. These particles have tunable properties that can be controlled by the simple adjustment of the size of the particle or the relative mass fractions of the polymer components in solution. Physical, optical, and mechanical properties of a variety of microparticles and nanoparticles, differing in size and composition, have been examined with extensive classical molecular dynamics calculations in conjunction with experiments to gain deeper insights into the fundamental nature of their structure, dynamics, and properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1571-1590, 2005
REFERENCES AND NOTES
- 1 Muthukumar, M. J Chem Phys 1984, 81, 6272–6276.
- 2 Kremer, K.;Binder, K. J Chem Phys 1984, 81, 6381–6394.
- 3 Binder, K. J Non-Equilib Thermodyn 1998, 23(1), 1–44.
- 4 Kant, R.;Kumar, S. K.;Colby, R. H. Macromolecules 2003, 36, 10087–10094.
- 5 Muthukumar, M. Curr Opin Colloid Interface Sci 1998, 3(1), 48–54.
- 6 Hariharan, A.;Kumar, S. K.;Rafailovich, M. H.;Sokolov, J.;Zheng, X.;Duong, D. H.;Schwarz, S. A.;Russell, T. P. J Chem Phys 1993, 99, 656–663.
- 7 Remmers, M.;Neher, D.;Gruner, J.;Friend, R. H.;Gelinck, G. H.;Warman, J. M.;Quattrocchi, C.;dos Santos, D. A.;Bredas, J. L. Macromolecules 1996, 29, 7432–7445.
- 8 Burroughes, J. H.;Bradley, D. D. C.;Brown, A. R.;Marks, R. N.;Mackay, K.;Friend, R. H.;Burns, P. L.;Holmes, A. B. Nature 1990, 347, 539–541.
- 9 Srinivasarao, M.;Collings, D.;Philips, A.;Patel, S. Science 2001, 292, 79–83.
- 10 Morrison, F. A.;Mays, J. W.;Muthukumar, M.;Nakatani, A. I.;Han, C. C. Macromolecules 1993, 26, 5271–5273.
- 11 Kumar, S. K.;Yethiraj, A.;Schweizer, K. S.;Leermakers, F. A. M. J Chem Phys 1995, 103, 10332–10346.
- 12 Chakrabarti, A.;Toral, R.;Gunton, J. D.;Muthukumar, M. Phys Rev Lett 1989, 63, 2072–2075.
- 13 Chakrabarti, A.;Toral, R.;Gunton, J. D.;Muthukumar, M. J Chem Phys 1990, 92, 6899–6909.
- 14 Tanaka, H.;Sigehuzi, T. Phys Rev E 1995, 52, 829–834.
- 15 Granick, S.;Hu, H. W. Langmuir 1994, 10, 3857–3866.
- 16 Pathak, J. A.;Davis, M. C.;Hudson, S. D.;Migler, K. B. J Colloid Interface Sci 2002, 255, 391–402.
- 17 Stepanek, P.;Lodge, T. P.;Kedrowski, C.;Bates, F. S. J Chem Phys 1991, 94, 8289–8301.
- 18 Cifra, P.;Karasz, F. E.;Macknight, W. J. J Polym Sci Part B: Polym Phys 1992, 30, 1401–1407.
- 19 Tata, B. V. R.;Raj, B. Bull Mater Sci 1998, 21, 263–278.
- 20 Guerra, J. M.;Srinivasarao, M.;Stein, R. S. Science 1993, 262, 1395–1400.
- 21 Jones, R. L.;Kumar, S. K.;Ho, D. L.;Briber, R. M.;Russell, T. P. Nature 1999, 400, 146–149.
- 22 Otaigbe, J. U.;Barnes, M. D.;Fukui, K.;Sumpter, B. G.;Noid, D. W. Polym Phys Eng 2001, 154, 1–86.
- 23 Pathak, J. A.;Migler, K. B. Langmuir 2003, 19, 8667–8674.
- 24 Mallamace, F.;Micali, N.;Chen, S. H. J Appl Crystallogr 1997, 30, 1105–1111.
- 25 Stepanek, P.;Morkved, T. L.;Krishnan, K.;Lodge, T. P.;Bates, F. S. Phys A: Stat Mech Appl 2002, 314, 411–418.
- 26 Morkved, T. L.;Stepanek, P.;Krishnan, K.;Bates, F. S.;Lodge, T. P. J Chem Phys 2001, 114, 7247–7259.
- 27 Barnes, M. D.;Kung, C. Y.;Lermer, N.;Fukui, K.;Sumpter, B. G.;Noid, D. W.;Otaigbe, J. U. Opt Lett 1999, 24, 121–123.
- 28 Barnes, M. D.;Ng, K. C.;Fukui, K.;Sumpter, B. G.;Noid, D. W. Macromolecules 1999, 32, 7183–7189.
- 29 Kung, C.;Barnes, M. D.;Lermer, N.;Whitten, W. B.;Ramsey, J. M. Appl Opt 1999, 38, 1481–1487.
- 30 Ng, K. C.;Ford, J. V.;Jacobson, S. C.;Ramsey, J. M.;Barnes, M. D. Rev Sci Instrum 2000, 71, 2497–2499.
- 31 Barnes, M. D.;Ng, K. C.;Whitten, W. B.;Ramsey, J. M. Anal Chem 1993, 65, 2360–2365.
- 32 Tekin, E.;de Gans, B. J.;Schubert, U. S. J Mater Chem 2004, 14, 2627–2632.
- 33 Sirringhaus, H.;Kawase, T.;Friend, R. H.;Shimoda, T.;Inbasekaran, M.;Wu, W.;Woo, E. P. Science 2000, 290, 2123–2126.
- 34 Paul, K. E.;Wong, W. S.;Ready, S. E.;Street, R. A. Appl Phys Lett 2003, 83, 2070–2072.
- 35 Deegan, R. D.;Bakajin, O.;Dupont, T. F.;Huber, G.;Nagel, S. R.;Witten, T. A. Nature 1997, 389, 827–829.
- 36 Ward, T. L.;Zhang, S. H.;Allen, T.;Davis, E. J. J Colloid Interface Sci 1987, 118, 343–355.
- 37 Widmann, J. F.;Davis, E. J. Colloid Polym Sci 1996, 274, 525–531.
- 38 Urlaub, E.;Lankers, M.;Hartmann, I.;Popp, J.;Trunk, M.;Kiefer, W. Chem Phys Lett 1994, 231, 511–514.
- 39 Lankers, M.;Popp, J.;Kiefer, W. Appl Spectrosc 1994, 48, 1166–1168.
- 40 Hashimoto, T.;Kumaki, J.;Kawai, H. Macromolecules 1983, 16, 641–648.
- 41 Snyder, H. L.;Meakin, P.;Reich, S. J Chem Phys 1983, 78, 3334–3336.
- 42 Klotz, S.;Cantow, H. J.;Kogler, G. Polym Bull 1985, 14, 143–146.
- 43 Okada, M.;Han, C. C. J Chem Phys 1986, 85, 5317–5327.
- 44 Karim, A.;Slawecki, T. M.;Kumar, S. K.;Douglas, J. F.;Satija, S. K.;Han, C. C.;Russell, T. P.;Liu, Y.;Overney, R.;Sokolov, O.;Rafailovich, M. H. Macromolecules 1998, 31, 857–862.
- 45 Chen, Z.;Shen, Y. R.;Somorjai, G. A. Annu Rev Phys Chem 2002, 53, 437–465.
- 46 Schaller, R. D.;Snee, P. T.;Johnson, J. C.;Lee, L. F.;Wilson, K. R.;Haber, L. H.;Saykally, R. J.;Nguyen, T. Q.;Schwartz, B. J. J Chem Phys 2002, 117, 6688–6698.
- 47 Nguyen, T. Q.;Schwartz, B. J.;Schaller, R. D.;Johnson, J. C.;Lee, L. F.;Haber, L. H.;Saykally, R. J. J Phys Chem B 2001, 105, 5153–5160.
- 48 Davis, E. J. Aerosol Sci Technol 1997, 26, 212–254.
- 49 Ray, A. K.;Souyri, A.;Davis, E. J.;Allen, T. M. Appl Opt 1991, 30, 3974–3983.
- 50 Barnes, M. D.;Lermer, N.;Whitten, W. B.;Ramsey, J. M. Rev Sci Instrum 1997, 68, 2287–2291.
- 51 Holler, S.;Zomer, S.;Crosta, G. F.;Pan, Y. L.;Chang, R. K.;Bottiger, J. R. Appl Opt 2004, 43, 6198–6206.
- 52 Aptowicz, K. B.;Pan, Y. L.;Chang, R. K.;Pinnick, R. G.;Hill, S. C.;Tober, R. L.;Goyal, A.;Leys, T.;Bronk, B. V. Opt Lett 2004, 29, 1965–1967.
- 53 Holler, S.;Pan, Y. L.;Chang, R. K.;Bottiger, J. R.;Hill, S. C.;Hillis, D. B. Opt Lett 1998, 23, 1489–1491.
- 54 Ford, J. V.;Sumpter, B. G.;Noid, D. W.;Barnes, M. D.;Hill, S. C.;Hillis, D. B. J Phys Chem B 2000, 104, 495–502.
- 55 Ford, J. V.;Sumpter, B. G.;Noid, D. W.;Barnes, M. D.;Otaigbe, J. U. Appl Phys Lett 2000, 77, 2515–2517.
- 56 Ford, J. V.;Sumpter, B. G.;Noid, D. W.;Barnes, M. D. Chem Phys Lett 2000, 316, 181–185.
- 57 Hill, S. C.;Saleheen, H. I.;Fuller, K. A. J Opt Soc Am A 1995, 12, 905–915.
- 58 Kung, C. Y.;Barnes, M. D.;Lermer, N.;Whitten, W. B.;Ramsey, J. M. Anal Chem 1998, 70, 658–661.
- 59 Fukui, K.;Sumpter, B. G.;Barnes, M. D.;Noid, D. W.;Otaigbe, J. U. Macromol Theory Simul 1999, 8, 38–45.
- 60 Salaniwal, S.;Kant, R.;Colby, R. H.;Kumar, S. K. Macromolecules 2002, 35, 9211–9218.
- 61 Kamath, S.;Colby, R. H.;Kumar, S. K. Macromolecules 2003, 36, 8567–8573.
- 62 Kumar, S. K.;Weinhold, J. D. Phys Rev Lett 1996, 77, 1512–1515.
- 63 Binder, K. Polym Confined Environ 1999, 138, 1–89.
- 64 Kumar, S. K. Macromolecules 1997, 30, 5085–5095.
- 65 Ashok, B.;Muthukumar, M.;Russell, T. P. J Chem Phys 2001, 115, 1559–1564.
- 66 Muller, M.;Binder, K.;Albano, E. V. J Mol Liq 2001, 92, 41–52.
- 67 Nauman, E. B.;He, D. Q. Chem Eng Sci 2001, 56, 1999–2018.
- 68 Wang, H.;Douglas, J. F.;Satija, S. K.;Composto, R. J.;Han, C. C. Phys Rev E 2003, 67.
- 69 Vao-Soongnern, V.;Xu, G. Q.;Mattice, W. L. Macromol Theory Simul 2004, 13, 539–549.
- 70 Vao-Soongnern, V.;Ozisik, R.;Mattice, W. L. Macromol Theory Simul 2001, 10, 553–563.
- 71 Tobita, H. Polym React Eng 2003, 11, 855–868.
- 72 Fortuny, M.;Graillat, C.;McKenna, T. F. Ind Eng Chem Res 2004, 43, 7210–7219.
- 73 Fukui, K.;Sumpter, B. G.;Runge, K.;Kung, C. Y.;Barnes, M. D.;Noid, D. W. Chem Phys 1999, 244, 339–349.
- 74 Fukui, K.;Sumpter, B. G.;Barnes, M. D.;Noid, D. W. Comput Theor Polym Sci 1999, 9, 245–254.
- 75 Gray, S. K.;Noid, D. W.;Sumpter, B. G. J Chem Phys 1994, 101, 4062–4072.
- 76 Heeger, A. J. Rev Mod Phys 2001, 73, 681–700.
- 77 Bradley, D. D. C.;Grell, M.;Grice, A.;Tajbakhsh, A. R.;O'Brien, D. F.;Bleyer, A. Opt Mater 1998, 9, 1–11.
- 78 Friend, R. H.;Bradley, D. D. C.;Brown, A. R.;Graham, S. C.;Halliday, D. A.;Burn, P. L.;Kraft, A.;Holmes, A. B. Mol Cryst Liq Cryst 1992, 216, 33–38.
- 79 Bradley, D. D. C. IEEE Trans Electron Devices 1991, 38, 2688–2689.
- 80 Sato, N.;Logdlund, M.;Lazzaroni, R.;Salaneck, W. R.;Bredas, J. L.;Bradley, D. D. C.;Friend, R. H.;Ziemelis, K. E. Chem Phys 1992, 160, 299–306.
- 81 Graham, S. C.;Bradley, D. D. C.;Friend, R. H.;Spangler, C. Synth Met 1991, 41, 1277–1280.
- 82 Wong, K. S.;Bradley, D. D. C.;Hayes, W.;Ryan, J. F.;Friend, R. H.;Lindenberger, H.;Roth, S. J Phys C: Solid State Phys 1987, 20, L187–L194.
- 83 Yip, W. T.;Hu, D. H.;Yu, J.;Vanden Bout, D. A.;Barbara, P. F. J Phys Chem A 1998, 102, 7564–7575.
- 84 Huser, T.;Yan, M.;Rothberg, L. J. Proc Natl Acad Sci USA 2000, 97, 11187–11191.
- 85 Hu, D. H.;Yu, J.;Barbara, P. F. J Am Chem Soc 1999, 121, 6936–6937.
- 86 Hu, D. H.; Yu, J.;Wong, K.;Bagchi, B.;Rossky, P. J.;Barbara, P. F. Nature 2000, 405, 1030–1033.
- 87 Kumar, P.;Mehta, A.;Mahurin, S. M.;Dai, S.;Dadmun, M. D.;Sumpter, B. G.;Barnes, M. D. Macromolecules 2004, 37, 6132–6140.
- 88 Kumar, P.;Mehta, A.;Dadmun, M. D.;Zheng, J.;Peyser, L.;Bartko, A. P.;Dickson, R. M.;Thundat, T.;Sumpter, B. G.;Noid, D. W.;Barnes, M. D. J Phys Chem B 2003, 107, 6252–6257.
- 89 Bartko, A. P.;Dickson, R. M. J Phys Chem B 1999, 103, 11237–11241.
- 90 Gettinger, C. L.;Heeger, A. J.;Drake, J. M.;Pine, D. J. Mol Cryst Liq Cryst Sci Technol Sect A 1994, 256, 507–512.
- 91 Whitehead, K. S.;Grell, M.;Bradley, D. D. C.;Inbasekaran, M.;Woo, E. P. Synth Met 2000, 111, 181–185.
- 92 Hellen, E. H.;Axelrod, D. J Opt Soc Am B 1987, 4, 337–350.
- 93 Bartko, A. P.;Xu, K. W.;Dickson, R. M. Phys Rev Lett 2002, 89.
- 94 Barnes, M. D.;Kung, C. Y.;Whitten, W. B.;Ramsey, J. M.;Arnold, S.;Holler, S. Phys Rev Lett 1996, 76, 3931–3934.
- 95 Kumar, P.;Lee, T. H.;Mehta, A.;Sumpter, B. G.;Dickson, R. M.;Barnes, M. D. J Am Chem Soc 2004, 126, 3376–3377.
- 96 Lee, T. H.;Kumar, P.;Mehta, A.;Xu, K. W.;Dickson, R. M.;Barnes, M. D. Appl Phys Lett 2004, 85, 100–102.
- 97 Mahurin, S. M.;Mehta, A.;Barnes, M. D.;Hathorn, B.;Sumpter, B. G.;Noid, D. W.;Runge, K. Opt Lett 2002, 27, 610–612.
- 98 Sumpter, B. G.;Kumar, P.;Mehta, A.;Barnes, M. D.;Shetton, W. A.;Harrison, R. J. J Phys Chem B 2005,in press.