Effects of added surfactants on thermoreversible gelation of associating polymer solutions
Corresponding Author
Tsutomu Furuya
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, JapanSearch for more papers by this authorTsuyoshi Koga
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Search for more papers by this authorFumihiko Tanaka
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Search for more papers by this authorCorresponding Author
Tsutomu Furuya
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, JapanSearch for more papers by this authorTsuyoshi Koga
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Search for more papers by this authorFumihiko Tanaka
Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Search for more papers by this authorAbstract
The influence of added surfactants on physical properties of associating polymer solutions was examined by a new statistical-mechanical theory of associating polymer solutions with multiple junctions and by computer simulation. The sol–gel transition line, the spinodal line, and the number of elastically effective chains in the mixed networks were calculated as functions of the concentration of added surfactants. All of them exhibited nonmonotonic behavior as a result of the following two competing mechanisms. One was the formation of new mixed micelles by binding surfactants onto the polymer associative groups. These micelles serve as crosslink junctions and promote gelation. The other was the replacement of polymer associative groups in the already formed network junctions by added surfactants. Such replacement lowers connectivity of junctions and destroys networks. The critical micelle concentration was also calculated. The results are compared with the reported experimental data on poly(ethylene oxide)-based associating polymers and hydrophobically modified cellulose derivatives. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 733–751, 2004
REFERENCES AND NOTES
- 1 Interactions of Surfactants with Polymers and Proteins; E. D. Goddard; K. P. Ananthapadmanabhan, Eds.; CRC: Boca Raton, FL, 1993, pp 203–276.
- 2 Jönsson, B.; Lindman, B.; Holmberg, K.; Kronberg, B. Surfactants and Polymers in Aqueous Solution; Wiley: Chichester, England, 1998, pp 91–245.
- 3 Annable, T.; Buscall, R.; Ettelaie, R.; Shepherd, P.; Whittlestone, D. Langmuir 1994, 10, 1060–1070.
- 4 Zhang, K.; Xu, B.; Winnik, M. A.; Macdonald, P. M. J Phys Chem 1996, 100, 9834–9841.
- 5 Glass, J. E. Adv Colloid Interface Sci 1999, 79, 123–148.
- 6 Kaczmarski, J. P.; Tarng, M.-R.; Ma, Z.; Glass, J. E. Colloids Surf A 1999, 147, 39–53.
- 7 Dai, S.; Tam, K. C.; Jenkins, R. D. J Phys Chem B 2001, 105, 10189–10196.
- 8
Nyström, B.;
Thuresson, K.;
Lindman, B.
Langmuir
1995,
11,
1994–2002.
10.1021/la00006a028 Google Scholar
- 9 Piculell, L.; Thuresson, K.; Ericsson, O. Faraday Discuss 1995, 101, 307–318.
- 10 Thuresson, K.; Lindman, B. J Phys Chem B 1997, 101, 6460–6468.
- 11 Kjøniksen, A.-L.; Nyström, B.; Lindman, B. Langmuir 1998, 14, 5039–5045.
- 12 Kjøniksen, A.-L.; Nilsson, S.; Thuresson, K.; Lindman, B.; Nyström, B. Macromolecules 2000, 33, 877–886.
- 13 Nilsson, S.; Thuresson, K.; Lindman, B.; Nyström, B. Macromolecules 2000, 33, 9641–9649.
- 14 Holmberg, C.; Nilsson, S.; Singh, S. K.; Sundelöf, L.-O. J Phys Chem 1992, 96, 871–876.
- 15 Nilsson, S.; Holmberg, C.; Sundelöf, L.-O. Colloid Polym Sci 1994, 272, 338–347.
- 16 Nilsson, S.; Holmberg, C.; Sundelöf, L.-O. Colloid Polym Sci 1995, 273, 83–95.
- 17 Holmberg, C.; Sundelöf, L.-O. Langmuir 1996, 12, 883–889.
- 18 Ridell, A.; Evertsson, H.; Nilsson, S.; Sundelöf, L.-O. J Pharm Sci 1999, 88, 1175–1181.
- 19 Nilsson, S. Macromolecules 1995, 28, 7837–7844.
- 20 Okano, T. Adv Polym Sci 1993, 110, 179–197.
- 21 Watanabe, M.; Akahoshi, T.; Tabata, Y.; Nakayama, D. J Am Chem Soc 1998, 120, 5577–5578.
- 22 Shirahama, K.; Yuasa, H.; Sugimoto, S. Bull Chem Soc Jpn 1981, 54, 375–377.
- 23 Nagarajan, R. J Chem Phys 1989, 90, 1980–1994.
- 24 Nikas, Y. J.; Blankschtein, D. Langmuir 1994, 10, 3512–3528.
- 25 Tanaka, F. Macromolecules 1998, 31, 384–393.
- 26 Wallin, T.; Linse, P. Langmuir 1998, 14, 2940–2949.
- 27 Sear, R. P. J Phys: Condens Matter 1998, 10, 1677–1686.
- 28 Gilányi, T. J Phys Chem B 1999, 103, 2085–2090.
- 29 Diamant, H.; Andelman, D. Macromolecules 2000, 33, 8050–8061.
- 30 Wallin, T.; Linse, P. J Phys Chem 1996, 100, 17873–17880.
- 31 Wallin, T.; Linse, P. J Phys Chem B 1997, 101, 5506–5513.
- 32 Balazs, A. C.; Hu, J. Y. Langmuir 1989, 5, 1230–1234.
- 33 Chakrabarti, A.; Toral, R. J Chem Phys 1989, 91, 5687–5693.
- 34 Saariaho, M.; Ikkala, O.; Szleifer, I.; Erukhimovich, I.; ten Brinke, G. J Chem Phys 1997, 107, 3267–3276.
- 35 Tanaka, F.; Stockmayer, W. H. Macromolecules 1994, 27, 3943–3954.
- 36 Tanaka, F.; Koga, T. Comp Theor Polym Sci 2000, 10, 259–267.
- 37 Tanaka, F.; Koga, T. Bull Chem Soc Jpn 2001, 74, 201–215.
- 38 Coniglio, A.; Stanley, H. E.; Klein, W. Phys Rev Lett 1979, 42, 518–522.
- 39 Joanny, J. F. Polymer 1980, 21, 71.
- 40 Panyukov, S. V. Sov Phys JETP 1985, 61, 1065.
- 41 Leibler, L.; Perzon, E.; Pincus, P. Polymer 1988, 29, 1105–1109.
- 42 Erukhimovich, I. Ya. JETP 1995, 81, 553.
- 43 Tanaka, F.; Ishida, M. Macromolecules 1996, 29, 7571–7580.
- 44 Khalatur, P. G.; Khokhlov, A. R. Macromol Theory Simul 1996, 5, 877–899.
- 45 Semenov, A. N.; Rubinstein, M. Macromolecules 1998, 31, 1373–1385.
- 46 Ermoshkin, A. V.; Erukhimovich, I. Ya. J Chem Phys 1999, 110, 1781–1793.
- 47 Gujrati, P. D.; Bowman, D. J Chem Phys 1999, 111, 8151–8164.
- 48 Binder, K.; Milchev, A.; Baschnagel, J. Annu Rev Mater Sci 1996, 26, 107–134.
- 49 Metropolis, A.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. J Chem Phys 1953, 21, 1087–1092.
- 50 Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953, pp 495–540.
- 51 Flory, P. J. J Chem Phys 1944, 12, 425.
- 52 Fukui, K.; Yamabe, T. Bull Chem Soc Jpn 1967, 40, 2052–2063.
- 53 Israelachvili, J. N. Intermolecular and Surface Forces, 2nd ed.; Academic: London, 1992, pp 341–394.
- 54 From the definition, a spanning cluster is required to span the simulation box in at least one direction of the Cartesian coordinate system. However, we have confirmed that spanning clusters simultaneously connect in all three directions at the gel point P∞ ≃ 0.5.
- 55 Pearson, D. S.; Graessley, W. W. Macromolecules 1978, 11, 528–533.
- 56 Scanlan, J. J Polym Sci 1960, 43, 501.
- 57 Case, L. C. J Polym Sci 1960, 45, 397.
- 58 Flory, P. J. J Am Chem Soc 1941, 63, 3091–3096.
- 59 Flory, P. J. J Am Chem Soc 1941, 63, 3096–3100.