Click chemistry-based synthesis of azo polymers for second-order nonlinear optics
Balakrishna Kolli
Polymer Science and Technology Centre, Naval Materials Research Laboratory, Shil-Badlapur road, Ambernath 421506, India
Search for more papers by this authorSarada P. Mishra
Polymer Science and Technology Centre, Naval Materials Research Laboratory, Shil-Badlapur road, Ambernath 421506, India
Search for more papers by this authorM. P. Joshi
Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
Search for more papers by this authorS. Raj Mohan
Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
Search for more papers by this authorT. S. Dhami
Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
Search for more papers by this authorCorresponding Author
A. B. Samui
Polymer Science and Technology Centre, Naval Materials Research Laboratory, Shil-Badlapur road, Ambernath 421506, India
Polymer Science and Technology Centre, Naval Materials Research Laboratory, Shill-Badlapur road, Ambernath 421506, IndiaSearch for more papers by this authorBalakrishna Kolli
Polymer Science and Technology Centre, Naval Materials Research Laboratory, Shil-Badlapur road, Ambernath 421506, India
Search for more papers by this authorSarada P. Mishra
Polymer Science and Technology Centre, Naval Materials Research Laboratory, Shil-Badlapur road, Ambernath 421506, India
Search for more papers by this authorM. P. Joshi
Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
Search for more papers by this authorS. Raj Mohan
Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
Search for more papers by this authorT. S. Dhami
Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
Search for more papers by this authorCorresponding Author
A. B. Samui
Polymer Science and Technology Centre, Naval Materials Research Laboratory, Shil-Badlapur road, Ambernath 421506, India
Polymer Science and Technology Centre, Naval Materials Research Laboratory, Shill-Badlapur road, Ambernath 421506, IndiaSearch for more papers by this authorAbstract
Four linear polymers containing pendant azo moiety were synthesized through click chemistry for second-order nonlinear optical study. The polymers were found soluble in most of the polar organic solvents such as tetrahydrofuran (THF), chloroform, and dimethyl formamide (DMF). The polymers showed thermal stability up to 300 °C and glass transition temperatures (Tg) in the range of 120–140 °C. The molecular weights (Mw) of these polymers (measured by gel permeation chromatography) were in the range 37,900–55,000 g/mol. The polymers were found to form optically transparent films by solution casting from THF solution. Order parameters were calculated from UV–vis absorption spectra. The morphology changes in the films after poling were characterized by atomic force microscopy. The angular dependence, temperature dependence, and time dependence of second harmonic generation (SHG) intensity were obtained by using 1064 nm Nd:YAG laser. The SHG intensity remained unchanged up to 95 °C. At room temperature, it remained stable up to 8 days after initial drop of about 14%. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012
REFERENCES AND NOTES
- 1(a) Whittall, I. R.; McDonagh, A. M.; Humphrey, M. G.; Samoc, M. Adv. Organomet. Chem. 1998, 42, 291–362; (b) Zyss, J. Molecular Nonlinear Optics: Materials, Physics and Devices; Academic Press: Boston, 1993; (c) Prasad, P. N.; Williams, D. J. Introduction to Nonlinear Optical Effects in Molecules and Polymers; John Wiley and Sons: New York, 1991.
- 2(a) Marder, S. R.; Kippelen, B.; Jen, A. K.-Y.; Peyghambarian, N. Nature 1997, 388, 845–851; (b) Shi, Y.; Zhang, C.; Zhang, H.; Bechtel, J. H.; Dalton, L. R.; Robinson, B. H.; Steier, W. H. Science 2000, 288, 119–122; (c) Chemla, D. S.; Zyss, J. Non-Linear Optical Properties of Organic Molecules and Crystals; Academic press: New York, 1987; Vols. 1–2.
- 3(a) Serhatli, I. E.; Yagci, Y.; Hattemer, E.; Zentel, R.; Schmalzlin, E.; Hohenadl, S.; Brauchle, C.; Meerholz, K. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 1589–1595; (b) Zhao, Y.; Lee, Z.; Qiu, L.; Zhai, J.; Zhou, J.; Shen, Y.; Xu, G.; Ye, P. Eur. Polym. J. 2001, 37, 445–449; (c) Boogers, J. A. F.; Klaase, P. T. A.; DeVlieger, J. J.; Tinnemans, A. H. A. Macromolecules 1994, 27, 205–209; (d) Liang, Z. X.; Yan, X. Z.; Chen, Y. L.; Cai, Z. G.; Yang, P. Q.; Xu, Z. L. React. Funct. Polym. 1997, 32, 75–81.
- 4(a) Kim, T. D.; Lee, K. S.; Jeong, Y. H.; Jo, J. H.; Chang, S. Synth. Met. 2001, 117, 307–309; (b) Yoon, C. B.; Moon, K. J.; Shim, H. K.; Lee, K. S. Mol. Cryst. Liq. Cryst. 1998, 316, 43–46.
- 5(a) Issam, A. M. Eur. Polym. J. 2007, 43, 214–219; (b) Chang, H.-L.; Lin, H.-L.; Wang, Y.-C.; Dai, S. A.; Su, W.-C.; Jeng, R. -J. Polymer 2007, 48, 2046–2055; (c) Apostoluk, A.; Nuzuki, J. -M.; Lee, K. -S. Opt. Mater. 2006, 263, 337–341.
- 6 Lee, J.-Y.; Lee, W.-J.; Park, E.-J.; Bang, H.-B.; Rhee, B. K.; Jung, C.; Lee, S. M.; Lee, J. H. Bull. Korean Chem. Soc. 2003, 24, 1727–1728.
- 7 Lee, J.-Y.; Bang, H.-B.; Park, E.-J.; Lee, W.-J.; Rhee, B. K.; Lee, S. M. Polym. Int. 2004, 53, 1838–1844.
- 8 Li, Z.; Wu, W.; Yu, G.; Liu, Y.; Ye, C.; Qin, J.; Li, Z. Appl. Mater. Interfaces 2009, 4, 856–863.
- 9(a) Ma, H.; Liu, S.; Luo, J.; Suresh, S.; Liu, L.; Kang, S. H.; Haller, M.; Sassa, T.; Dalton, L. R.; Jen, A. K. Y. Adv. Funct. Mater. 2002, 12, 565–574; (b) Briers, D.; Picard, I.; Verbiest, T.; Persoons, A.; Samyn, C. Polymer 2004, 45, 19–24.
- 10(a) Percec, V.; Turkaly, P. J.; Asabdei, A. D. Macromolecules 1997, 30, 943–952; (b) Percec, V.; Asabdei, A. D.; Chu, P. Macromolecules 1996, 29, 3736–3750; (c) Percec, V.; Kawasumi, M. Macromolecules 1992, 25, 3851–3861; (d) Percec, V. Pure Appl. Chem. 1995, 67, 2031–2038.
- 11 Percec, V.; Asabdei, A. D. Macromolecules 1997, 30, 7701–7720.
- 12 Percec, V.; Kawasumi, M. Macromolecules 1993, 26, 3663–3675.
- 13(a) Percec, V.; Chu, P.; Kawasumi, M. Macromolecules 1994, 27, 4441–4453; (b) Percec, V.; Kawasumi, M. J. Chem. Soc. Perkin Trans. 1 1993, 1319–1334.
- 14
Rostovtsev, V. V.;
Green, L. G.;
Fokin, V. V.;
Sharpless, K. B.
Angew. Chem. Int. Ed. Engl.
2002,
41,
2596–2599.
10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 CAS PubMed Web of Science® Google Scholar
- 15 Wang, Z.-X; Qin, H.-L. Chem. Commun. 2003, 19, 2450–2451.
- 16(a) Lenda, F.; Guenone, F.; Tazi, B.; Larbi, N. B. Tetrahedron Lett. 2004, 45, 8905–8907; (b) Manetsch, R.; Krasinski, A.; Radic, Z.; Raushel, J.; Taylor, P.; Sharpless, K. B. J. Am. Chem. Soc. 2004, 126, 12809–12818.
- 17(a) Park, J. S.; Kim, Y. H.; Song, M.; Kim, C.-H.; Karim, Md. A.; Lee, J. W.; Gal, Y.-S.; Kumar, P.; Kang, S.-W.; Jin, S.-H. Macromol. Chem. Phys. 2010, 211, 2464–2473; (b) Karim, Md. A.; Cho, Park, J. S.; Kim, S. C.; Kim, H. J.; Lee, J. W.; Gal, Y.-S.; Jin, S.-H. Chem. Commun. 2008, 16, 1929–1931.
- 18 Pandey, S.; Kolli, B.; Mishra, S. P.; Samui, B. J. Polym. Sci. Part A: Polym. Chem. 2011 (communicated).
- 19(a) Li, Z.; Yu, G.; Hu, P.; Liu, Y.; Qin, J.; Li, Z. Macromolecules 2009, 42, 1589–1596; (b) Li, Z.; Wu, W.; Qin, G.; Liu, Y.; Ye, C.; Qin, C.; Li, Z. J. Polym. Sci. Part A: Polym Chem. 2011, 49, 1977–1987; (c) Xie, J.; Shi, W.; Deng, X.; Cao, Z.; Shen, Q. J. Polym. Sci. Part B: Polym. Phys. 2008, 46, 1140–1148.
- 20 Palai, A. K.; Mishra, S. P.; Kumar, A.; Srivastava, R.; Kamalasanan, M. N.; Patri, M. Macromol. Chem. Phys. 2010, 211, 1890–1899.
- 21 Rekha, A. S.; Ratna, D.; Samui, A. B. J. Appl. Polym. Sci. 2007, 103, 425–431.
- 22 Shen, X.; Liu, H.; Li, Y.; Liu, S.; Liu, S. Macromolecules 2008, 41, 2421–2425.
- 23 Chen, Z.; Dreyer, D. R.; Wu, Z. -Q.; Wiggins, K. M.; Jiang, Z.; Bielawski, C. W. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 1421–1426.
- 24 Li, Z.; Yu, G.; Li, Z.; Liu, Y.; Ye, C.; Qin, J. Polymer 2008, 49, 901–913.