Tunable light-harvesting polymers containing embedded dipolar chromophores for polymer solar cell applications
David F. Zeigler
Department of Chemistry, University of Washington, Seattle, Washington 98195-1700
Search for more papers by this authorKung-Shih Chen
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120
Search for more papers by this authorHin-Lap Yip
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120
Search for more papers by this authorYong Zhang
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120
Search for more papers by this authorCorresponding Author
Alex K.-Y. Jen
Department of Chemistry, University of Washington, Seattle, Washington 98195-1700
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120
Department of Chemistry, University of Washington, Seattle, Washington 98195-1700Search for more papers by this authorDavid F. Zeigler
Department of Chemistry, University of Washington, Seattle, Washington 98195-1700
Search for more papers by this authorKung-Shih Chen
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120
Search for more papers by this authorHin-Lap Yip
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120
Search for more papers by this authorYong Zhang
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120
Search for more papers by this authorCorresponding Author
Alex K.-Y. Jen
Department of Chemistry, University of Washington, Seattle, Washington 98195-1700
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120
Department of Chemistry, University of Washington, Seattle, Washington 98195-1700Search for more papers by this authorAbstract
A series of light-harvesting conjugated polymers were designed and synthesized for polymer solar cells. These newly designed polymers comprise an unusual two-dimensional conjugated structure with an electron-rich thiophene–triphenylamine backbone and stable planar indacenodithiophene π-bridges terminated with tunable electron acceptors. It was found that the electron-withdrawing strength of the acceptor could be used to manipulate the energy level of the lowest unoccupied molecular orbital and bandgap (as much as 0.3 eV), generating derivatives with complementary absorbance in the visible spectrum. This approach provides great flexibility in fine tuning the electronic and optical properties of the resultant polymers and facilitates the investigation of how these chemical modifications alter the subsequent photovoltaic properties of these materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012
REFERENCES AND NOTES
- 1 Morton, O. Nature 2006, 443, 19–22.
- 2 Boukai, A.; Haney, P.; Katzenmeyer, A.; Gallatin, G. M.; Talin, A. A.; Yang, P. Chem. Phys. Lett. 2011, 501, 153–158.
- 3 Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789–1791.
- 4 Dennler, G.; Scharber, M. C.; Brabec, C. J. Adv. Mater. 2009, 21, 1323–1338.
- 5 Oberhumer, P. M.; Huang, Y.-S.; Massip, S.; James, D. T.; Tu, G.; Albert-Seifriend, S.; Beljonne, D.; Cornil, J.; Kim J.-S.; Huck, W. T. S.; Greenham, N. C.; Hodgkiss, J. M.; Friend, R. H. J. Chem. Phys. 2011, 134, 114901.
- 6 Dufresne, S.; Guarin, S. A. P.; Bolduc, A.; Bourque, A. N.; Skene, W. G. Photochem. Photobiol. Sci. 2009, 8, 796–804.
- 7 Duan, C.; Cai, W.; Zhong, C.; Li, Y.; Wang, X.; Huang, F.; Cao, Y. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 4406–4415.
- 8 Huang, F.; Chen, K.-S.; Yip, H.-L.; Hau, S. K.; Acton, O.; Zhang, Y.; Luo, J.; Jen, A. K.-Y. J. Am. Chem. Soc. 2009, 131, 13886–13887.
- 9 Duan, C.; Cai, W.; Huang, F.; Zhang, J.; Wang, M.; Yang, T.; Zhong, C.; Gong, X.; Cao, Y. Macromolecules 2010, 43, 5262–5268.
- 10 Cheng, Y. J.; Hung, L. C.; Cao, F. Y.; Kao, W. S.; Chang, C. Y.; Hsu, C. S. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 1791–1801.
- 11 Hsu, S.-L.; Chen, C.-M.; Wei, K.-H. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 5128–5134.
- 12 Duan, C.; Chen, K.-S.; Huang, F.; Yip, H.-L.; Liu, S.; Zhang, J.; Jen, A. K.-Y.; Cao, Y. Chem. Mater. 2010, 22, 6444–6452.
- 13 Sahu, D.; Padhy, H.; Patra, D.; Huang, J.-H.; Chu, C.-W.; Lin, H.-C. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 5812–5823.
- 14 Zhang, Z.-G.; Fn, H.; Min, J.; Zhang, S.; Zhang, J.; Zhang, M.; Guo, X.; Zhan, X.; Li, Y. Polym. Chem. 2011, 2, 1678–1687.
- 15 Marder, S. R.; Cheng, L.-T.; Tiemann, B. G.; Friedli, A. C.; Blanchard-Desce, M.; Perry, J. W.; Skindhøj, J. Science 1994, 263, 511–514.
- 16 Liu, S.; Haller, M. A.; Ma, H.; Dalton, L. R.; Jang, S.-H.; Jen, A. K.-Y. Adv. Mater. 2003, 15, 603.
- 17 Cheng, Y.-J.; Luo, J.; Hau, S.; Bale, D. H.; Kim, T.-D.; Shi, Z.; Lao, D. B.; Tucker, N. M.; Tian, Y.; Dalton, L. R.; Reid, P. J.; Jen, A. K.-Y. Chem. Mater. 2007, 19, 1154–1163.
- 18 Hirani, B.; Li, J.; Djurovich, P. I.; Yousufuddin, M.; Oxgaard, J.; Persson, P.; Wilson, S. R.; Bau, R.; Goddard, W. A.; Thompson, M. E. Inorg. Chem. 2007, 46, 3865–3875.
- 19 Li, Z.; Zhao, Y.; Zhou, J.; Shen, Y. Eur. Polym. J. 2000, 36, 2417–2421.
- 20 Sancho-Garcia, J. C.; Foden, C. L.; Grizzi, I.; Greczynski, G.; de Jong, M. P.; Salaneck, W. R.; Brédas, J.-L.; Cornil, J. J. Phys. Chem. B 2004, 108, 5594–5599.
- 21 Meng, K.; Ding, Q.; Wang, S.; He, Y.; Li, Y.; Gong, Q. J. Phys. Chem. B 2010, 114, 2602–2606.
- 22 Schulz, G. L.; Chen, X.; Holdcroft, S. Appl. Phys. Lett. 2009, 94, 023302.
- 23 Bundgaard, E.; Krebs, F. C. Macromolecules 2006, 39, 2823–2931.
- 24 Chen, C.-P.; Chan, S.-H.; Chao, T.-C.; Ting, C.; Ko, B.-T. J. Am. Chem. Soc. 2008, 130, 12828–12833.
- 25 Chen, Y.-C.; Yu, C.-Y.; Fan, Y.-L.; Huang, L.-I.; Chen, C.-P.; Ting, C. Chem. Commun. 2010, 46, 6503–6505.
- 26 Chen, C.-P.; Chan, S.-H.; Chao, T.-C.; Ting, C.; Lin, C.-S.; Ko, B.-T. Macromolecules 2008, 41, 5519–5526.
- 27 Yu, C.-Y.; Chen, C.-P., Chan, S.-H.; Hwang, G.-W.; Ting, C. Macromolecules 2009, 21, 3262–3269.
- 28 Zhang, W. M.; Smith, J.; Watkins, S. E.; Gysel, R.; McGehee, M.; Salleo, A.; Kirkpatrick, J.; Ashraf, S.; Anthopoulos, T.; Heeney, M.; McCulloch, I. J. Am. Chem. Soc. 2010, 132, 11437–11439.
- 29 D'Auria, M.; de Mico, A.; D'Onofrio, F.; Piancatelli, G. J. Chem. Soc. Perkin Trans. I 1987, 1777–1780.
- 30 Spagnolo, P.; Zanirato, P.; Gronowitz, S. J. Org. Chem. 1982, 47, 3177–3180.
- 31 Li, Z. H.; Wong, M. S. Org. Lett. 2006, 8, 1499.
- 32 Qian, G.; Dai, B.; Luo, M.; Yu, D.; Zhan, J.; Zhang, Z.; Ma, D.; Wang, Z. Y. Chem. Mater. 2008, 20, 6208–6216.
- 33 Zhang, Y.; Zou, J.; Yip, H.-L.; Chen, K.-S.; Zeigler, D. F.; Sun, Y.; Jen A. K.-Y. Chem. Mater. 2011, 23, 2289–2291.
- 34
van Pham, C.;
Macomber, R. S.;
Mark, H. B., Jr.;
Zimmer, H. J.
Org. Chem.
1984,
49,
5250–5253.
10.1021/jo00200a048 Google Scholar
- 35 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.
- 36 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter 1988, 37, 785–789.
- 37 Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
- 38 Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724–728.
- 39 Poolmee, P.; Ehara, M.; Hannongbua, S.; Nakatsuji, H. Polymer 2005, 46, 6474–6481.
- 40 Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864–B871.
- 41 Kohn, W.; Sham, L. Phys. Rev. 1965, 140, A1133–A1138.
- 42 Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletête, M.; Durocher, G.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2008, 130, 732–742.
- 43 Nguyen, T.-Q.; Wu, J.; Doan, V.; Schwartz, B. J.; Tolbert, S. H. Science 2000, 288, 652–656.
- 44 Boland, P.; Sunkavalli, S. S.; Chennuri, S.; Foe, K.; Abdel-Fattah, T.; Namkoong, G. Thin Solid Films 2010, 518, 1728–1731.
- 45 Mayer, A. C.; Toney, M. F.; Scully, S. R.; Rivnay, J.; Brabec, C. J.; Scharber, M.; Koppe, M.; Heeney, M.; McCulloch, I.; McGehee, M. D. Adv. Funct. Mater. 2009, 19, 1173–1179.