A review on the role of proton exchange membrane on the performance of microbial fuel cell
Corresponding Author
Mostafa Rahimnejad
Biofuel and Renewable Energy Research Center, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
Advanced Membrane and Biotechnology Research Center, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
Correspondence to: Biofuel and Renewable Energy Research Center, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
E-mail: [email protected]; [email protected]
Mostafa Ghasemi, Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan, Malaysia. E-mail: [email protected]; [email protected]
Search for more papers by this authorGholamreza Bakeri
Biofuel and Renewable Energy Research Center, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
Search for more papers by this authorCorresponding Author
Mostafa Ghasemi
Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan, Malaysia
Correspondence to: Biofuel and Renewable Energy Research Center, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
E-mail: [email protected]; [email protected]
Mostafa Ghasemi, Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan, Malaysia. E-mail: [email protected]; [email protected]
Search for more papers by this authorAlireza Zirepour
Biofuel and Renewable Energy Research Center, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
Search for more papers by this authorCorresponding Author
Mostafa Rahimnejad
Biofuel and Renewable Energy Research Center, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
Advanced Membrane and Biotechnology Research Center, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
Correspondence to: Biofuel and Renewable Energy Research Center, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
E-mail: [email protected]; [email protected]
Mostafa Ghasemi, Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan, Malaysia. E-mail: [email protected]; [email protected]
Search for more papers by this authorGholamreza Bakeri
Biofuel and Renewable Energy Research Center, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
Search for more papers by this authorCorresponding Author
Mostafa Ghasemi
Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan, Malaysia
Correspondence to: Biofuel and Renewable Energy Research Center, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
E-mail: [email protected]; [email protected]
Mostafa Ghasemi, Fuel Cell Institute, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan, Malaysia. E-mail: [email protected]; [email protected]
Search for more papers by this authorAlireza Zirepour
Biofuel and Renewable Energy Research Center, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
Search for more papers by this authorAbstract
Proton exchange membranes (PEMs) are the most frequently used separators in microbial fuel cells (MFCs). The role of proton transportation in MFC performance makes PEMs one of the most important components in the cell. The effect of PEMs in MFC performance is commonly determined according to generated power density and coulombic efficiency. Nafion is the commonly used membrane in MFCs, but there are still a number of problems associated with the use of Nafion including oxygen transfer rate, cation transport and accumulation rather than protons, membrane fouling and substrate loss. Moreover, additional problems can also be attributed to the effect of PEMs including internal resistance and pH change in MFCs. Recent developments in PEM performance are attributed to two categories including utilization of other types of membranes and improvements in Nafion by pre-treatment methods. Copyright © 2014 John Wiley & Sons, Ltd.
REFERENCES
- 1 D. Pant, G. Van Bogaert, M. De Smet, L. Diels, K. Vanbroekhoven, Electrochim. Acta 2010, 55, 7710–7716.
- 2 B.-H. Kim, H.-J. Kim, M.-S. Hyun, D.-H. Park, J. Microbiol. Biotechnol. 1999, 9, 127–131.
- 3 J. Rao, G. Richter, F. Von Sturm, E. Weidlich, Bioelectrochem. Bioenerg. 1976, 3, 139–150.
- 4 L. B. Wingard, C. H. Shaw, J. F. Castner, Enzym. Microb. Technol. 1982, 4, 137–142.
- 5 K.-J. Chae, M.-J. Choi, J. Lee, F. Ajayi, I. S. Kim, Int. J. Hydrog. Energy 2008, 33, 5184–5192.
- 6 H. Liu, S. Grot, B. E. Logan, Environ. Sci. Tech. 2005, 39, 4317–4320.
- 7 R. A. Rozendal, H. V. Hamelers, G. J. Euverink, S. J. Metz, C. J. Buisman, Int. J. Hydrog. Energy 2006, 31, 1632–1640.
- 8 K. Rabaey, P. Clauwaert, P. Aelterman, W. Verstraete, Environ. Sci. Tech. 2005, 39, 8077–8082.
- 9 B. H. Kim, I. S. Chang, G. C. Gil, H. S. Park, H. J. Kim, Biotechnol. Lett. 2003, 25, 541–545.
- 10 G.-C. Gil, I.-S. Chang, B. H. Kim, M. Kim, J.-K. Jang, H. S. Park, H. J. Kim, Biosens. Bioelectron. 2003, 18, 327–334.
- 11 K. J. Chae, M. Choi, F. F. Ajayi, W. Park, I. S. Chang, I. S. Kim, Energy Fuel 2007, 22, 169–176.
- 12 P. Clauwaert, K. Rabaey, P. Aelterman, L. De Schamphelaire, T. H. Pham, P. Boeckx, N. Boon, W. Verstraete, Environ. Sci. Tech. 2007, 41, 3354–3360.
- 13 D. R. Bond, D. R. Lovley, Appl. Environ. Microbiol. 2003, 69, 1548–1555.
- 14 J. K. Jang, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, B. H. Kim, Process Biochem. 2004, 39, 1007–1012.
- 15 B. Min, S. Cheng, B. E. Logan, Water Res. 2005, 39, 1675–1686.
- 16 S. Freguia, K. Rabaey, Z. Yuan, J. Keller, Water Res. 2008, 42, 1387–1396.
- 17 J. R. Kim, S. Cheng, S.-E. Oh, B. E. Logan, Environ. Sci. Tech. 2007, 41, 1004–1009.
- 18 X. Zhang, S. Cheng, X. Wang, X. Huang, B. E. Logan, Environ. Sci. Tech. 2009, 43, 8456–8461.
- 19 W.-W. Li, G.-P. Sheng, X.-W. Liu, H.-Q. Yu, Bioresour. Technol. 2011, 102, 244–252.
- 20 Q. Deng, X. Li, J. Zuo, A. Ling, B. E. Logan, J. Power. Sources 2010, 195, 1130–1135.
- 21 S. Cheng, H. Liu, B. E. Logan, Electrochem. Commun. 2006, 8, 489–494.
- 22 S.-E. Oh, B. E. Logan, Appl. Microbiol. Biotechnol. 2006, 70, 162–169.
- 23 C. J. Sund, S. McMasters, S. R. Crittenden, L. E. Harrell, J. J. Sumner, Appl. Microbiol. Biotechnol. 2007, 76, 561–568.
- 24 R. A. Rozendal, H. V. Hamelers, K. Rabaey, J. Keller, C. J. Buisman, Trends Biotechnol. 2008, 26, 450–459.
- 25 M. Grzebyk, G. Poźniak, Sep. Purif. Technol. 2005, 41, 321–328.
- 26 D. H. Park, J. G. Zeikus, Appl. Environ. Microbiol. 2000, 66, 1292–1297.
- 27 Z. He, S. D. Minteer, L. T. Angenent, Environ. Sci. Tech. 2005, 39, 5262–5267.
- 28 F. Harnisch, U. Schröder, F. Scholz, Environ. Sci. Tech. 2008, 42, 1740–1746.
- 29 I. Ieropoulos, J. Greenman, C. Melhuish, Bioelectrochemistry 2010, 78, 44–50.
- 30 P. Vermeiren, R. Leysen, H. Beckers, J. Moreels, A. Claes, J. Porous. Mater. 2008, 15, 259–264.
- 31 R. A. Rozendal, H. V. Hamelers, C. J. Buisman, Environ. Sci. Tech. 2006, 40, 5206–5211.
- 32 F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, I. Herrmann, Environ. Sci. Tech. 2006, 40, 5193–5199.
- 33 H. Liu, B. E. Logan, Environ. Sci. Tech. 2004, 38, 4040–4046.
- 34 N. Wagner, J. Appl. Electrochem. 2002, 32, 859–863.
- 35 N. Wagner, E. Gülzow, J. Power. Sources 2004, 127, 341–347.
- 36 Z. Samec, A. Trojanek, J. Langmaier, E. Samcova, J. Electrochem. Soc. 1997, 144, 4236–4242.
- 37 I. Stenina, P. Sistat, A. Rebrov, G. Pourcelly, A. Yaroslavtsev, Desalination 2004, 170, 49–57.
- 38 T. Okada, S. Møller-Holst, O. Gorseth, S. Kjelstrup, J. Electroanal. Chem. 1998, 442, 137–145.
- 39 T. Okada, N. Nakamura, M. Yuasa, I. Sekine, J. Electrochem. Soc. 1997, 144, 2744–2750.
- 40 M. J. Kelly, G. Fafilek, J. O. Besenhard, H. Kronberger, G. E. Nauer, J. Power. Sources 2005, 145, 249–252.
- 41 M. Ghasemi, S. Shahgaldi, M. Ismail, Z. Yaakob, W. R. W. Daud, Chem. Eng. J. 2012, 184, 82–89.
- 42 A. Ter Heijne, H. V. Hamelers, V. De Wilde, R. A. Rozendal, C. J. Buisman, Environ. Sci. Tech. 2006, 40, 5200–5205.
- 43 J. Xu, G.-P. Sheng, H.-W. Luo, W.-W. Li, L.-F. Wang, H.-Q. Yu, Water Res. 2012, 46, 1817–1824.
- 44 M.-J. Choi, K.-J. Chae, F. F. Ajayi, K.-Y. Kim, H.-W. Yu, C.-w. Kim, I. S. Kim, Bioresour. Technol. 2011, 102, 298–303.
- 45 C. Bellona, J. E. Drewes, P. Xu, G. Amy, Water Res. 2004, 38, 2795–2809.
- 46 H.-J. Lee, S.-H. Moon, S.-P. Tsai, Sep. Purif. Technol. 2002, 27, 89–95.
- 47 N. Jang, X. Ren, K. Choi, I. Kim, Water Sci. Tech. 2006, 53, 43–49.
- 48 Q. Li, M. Elimelech, Environ. Sci. Tech. 2004, 38, 4683–4693.
- 49 M. Herzberg, M. Elimelech, J. Membr. Sci. 2007, 295, 11–20.
- 50 H.-J. Lee, J.-H. Choi, J. Cho, S.-H. Moon, J. Membr. Sci. 2002, 203, 115–126.
- 51 H. Liu, R. Ramnarayanan, B. E. Logan, Environ. Sci. Tech. 2004, 38, 2281–2285.
- 52 S. Slade, S. Campbell, T. Ralph, F. Walsh, J. Electrochem. Soc. 2002, 149, A1556–A1564.
- 53 M. Ghasemi, W. R. Wan Daud, M. Ismail, M. Rahimnejad, A. F. Ismail, J. X. Leong, M. Miskan, K. Ben Liew, Int. J. Hydrog. Energy 2013, 38, 5480–5484.
- 54 S. Pandit, S. Ghosh, M. Ghangrekar, D. Das, Int. J. Hydrog. Energy 2012, 37, 9383–9392.
- 55 L. Zhuang, C. Feng, S. Zhou, Y. Li, Y. Wang, Process Biochem. 2010, 45, 929–934.
- 56 M. Rahimnejad, M. Ghasemi, G. Najafpour, M. Ismail, A. Mohammad, A. Ghoreyshi, S. H. Hassan, Electrochim. Acta 2012, 85, 700–706.
- 57 M. Ghasemi, M. Rahimnejad, C. Esmaeili, W. R. W. Daud, M. S. Masdar, E. H. Majlan, S. H. Hassan, J. Alam, M. Ismail, M. S. Alhoshan, Am. J. Biochem. Biotechnol. 2013, 8, 311.