A Minimalist Method for Fully Oxygen-Tolerant RAFT Polymerization through Sulfur-Centered Trithiocarbonate Radical Initiation
Abstract
In recent years, the fully oxygen-tolerant reversible deactivation radical polymerization (RDRP) has become a highly researched area. In this contribution, a new and minimalist method is successfully employed to accomplish fully oxygen-tolerant reversible addition-fragmentation chain transfer (RAFT) polymerization using bis(trithiocarbonate) disulfides (BisTTC) as an iniferter agent, where the released sulfur-centered trithiocarbonate (TTC) radical can initiate monomer. Furthermore, polymerization kinetics revealed the typical “living” features of this polymerization system. More importantly, by high-throughput screening, it is found that dodecyl-substituted TTC is responsible for the fully oxygen-tolerant RAFT polymerization though trithiocarbonate radical initiation and R radical deoxygenation. It is believed that trithiocarbonate radical initiation strategy provides a powerful and minimalist tool for fully oxygen-tolerant RDRPs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.