Thermal Stability of Bio-Based Aliphatic-Semiaromatic Copolyester for Melt-Spun Fibers with Excellent Mechanical Properties
Jialiang Zhou
College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorQingqing Zhu
College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorWeinan Pan
College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Hengxue Xiang,
College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
E-mail: [email protected], [email protected]
Search for more papers by this authorZexu Hu
College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Meifang Zhu
College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
E-mail: [email protected], [email protected]
Search for more papers by this authorJialiang Zhou
College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorQingqing Zhu
College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorWeinan Pan
College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Hengxue Xiang,
College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
E-mail: [email protected], [email protected]
Search for more papers by this authorZexu Hu
College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Meifang Zhu
College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Flexible aliphatic poly(lactic acid) is introduced into polyethylene terephthalate through copolymerization to prepare biodegradable copolyester, which aims to solve the non-degradability of polyethylene terephthalate (PET) and realize the greening of raw materials. In this work, poly(ethylene terephthalate-co-lactic acid) random copolyesters (PETLAs) of lactic acid composition from 10 to 50% is synthesized via one-pot method. The chemical structure and composition, thermal property, and crystallization property of prepared PETLAs resin are characterized. The results shows that the introduction of LA segment forms random copolyester, and the flexible LA segment results in slight decrease in the glass transition temperatures (Tg), melting point (Tm), and crystallinity (Xc) of the copolyesters. The thermal stability of PETLAs is better, and the initial decomposition temperature of PETLA-10 can reach 394 °C. The PETLAs resin exhibits good processability, and PETLAs fibers are prepared by melt spinning. The strength of PETLA-10 fiber can reach 260 MPa after drawing treatment, and the elongation at break can reach 130%. Taking advantage of their features, PETLAs as an innovative bio-based polymer are expected to achieve ecofriendly applications in the fields of fiber, plastic, and film.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
marc202000498-sup-0001-SuppMat.pdf669.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. J. Yoon, S. Y. Hwang, J. M. Koo, J. L. Yoo, U. L. Sang, S. I. Seung, Macromolecules 2013, 46, 7219.
- 2N. Jacquel, R. Saint-Loup, J. P. Pascault, A. Rousseau, F. Fenouillot, Polymer 2015, 59, 234.
- 3J. Wang, X. Liu, Y. Zhang, F. Liu, J. Zhu, Polymer 2016, 103, 1.
- 4J. N. Hahladakis, C. A. Velis, R. Weber, E. Iacovidou, P. Purnell, J. Hazard. Mater. 2018, 344, 179.
- 5V. Sinha, M. R. Patel, J. V. Patel, J. Polym. Environ. 2010, 18, 8.
- 6I. Flores, A. Etxeberria, L. Irusta, I. Calafel, J. F. Vega, J. Martínez-Salazar, H. Sardon, A. J. Müller, ACS Sustainable Chem. Eng. 2019, 7, 8647.
- 7S. Joo, I. J. Cho, H. Seo, H. F. Son, H. Y. Sagong, T. J. Shin, S. Y. Choi, S. Y. Lee, K. J. Kim, Nat. Commun. 2018, 9, 382.
- 8F. T. Welle, Resour., Conserv. Recycl. 2011, 55, 865.
- 9X. Wang, Q. Wang, S. Liu, T. Sun, G. Wang, Polym. Test. 2020, 81, 106284.
- 10L. Chen, R. E. O. Pelton, T. M. Smith, J. Cleaner Prod. 2016, 137, 667.
- 11G. Z. Papageorgiou, D. G. Papageorgiou, V. Tsanaktsis, D. N. Bikiaris, Polymer 2015, 62, 28.
- 12J. Zhang, J. Li, Y. Tang, L. Lin, M. Long, Carbohydr. Polym. 2015, 130, 420.
- 13A. Buasri, N. Chaiyut, T. Jenjaka, S. Weerasunthorn, S. Juengrungchaiwattana, Chiang Mai J. Sci. 2011, 38, 619.
- 14P. A. Wilbon, J. L. Swartz, N. R. Meltzer, J. P. Brutman, M. A. Hillmyer, J. E. Wissinger, ACS Sustainable Chem. Eng. 2017, 5, 9185.
- 15M. Soccio, L. Finelli, N. Lotti, M. Gazzano, A. Munari, Eur. Polym. J. 2006, 42, 2949.
- 16H. S. Park, J. A. Seo, H. Y. Lee, H. W. Kim, I. B. Wall, M. S. Gong, J. C. Knowles, Acta Biomater. 2012, 8, 2911.
- 17U. Witt, R. - J. Müller, J. Augusta, H. Widdecke, W. - D. Deckwer, Macromol. Chem. Phys. 1994, 195, 793.
- 18C. Japu, A. M. D. Ilarduya, A. Alla, Y. Jiang, K. Loos, S. M. Guerra, Biomacromolecules 2015, 16, 868.
- 19Y. Nakayama, W. Yagumo, R. Tanaka, T. Shiono, K. Inumaru, C. Tsutsumi, N. Kawasaki, N. Yamano, A. Nakayama, Polym. Degrad. Stab. 2020, 174, 109095.
- 20M. Rose, R. Palkovits, ChemSusChem 2012, 5, 167.
- 21E. Olewnik, W. Czerwinski, J. Nowaczyk, M. O. Sepulchre, M. Tessier, S. Salhi, A. Fradet, Eur. Polym. J. 2007, 43, 1009.
- 22M. B. Gara, W. Kammoun, C. Delaite, S. Abid, R. E.l Gharbi, J. Macromol. Sci., Part A: Pure Appl.Chem. 2015, 52, 454.
- 23Q. Xing, D. Ruch, P. Dubois, L. Wu, W. Wang, ACS Sustainable Chem. Eng. 2017, 5, 10342.
- 24Z. Wei, Y. Liu, H. Hu, J. Yu, F. Li, RSC Adv. 2016, 6, 108240.
- 25V. Nagarajan, A. K. Mohanty, M. Misratt, ACS Sustainable Chem. Eng. 2016, 4, 2899.
- 26Q. Yao, J. G. L. Cosme, T. Xu, J. M. Miszuk, P. H. S. Picciani, H. Fong, H. Sun, Biomaterials 2017, 115, 115.
- 27Z. Li, B. H. Tan, T. Lin, J. M. Miszuk, P. Picciani, H. Fong, H. Sun, Prog. Polym. Sci. 2016, 62, 22.
- 28C. Gu, D. A. Hauge, S. J. Severtson, W. Wang, L. E. Gwin, Ind. Eng. Chem. Res. 2014, 53, 17376.
- 29H. Hu, R. Zhang, L. Shi, W. Ying, J. Wang, J. Zhu, Ind. Eng. Chem. Res. 2018, 57, 11020.
- 30B. Wang, Y. Zhang, P. Song, Z. Guo, J. Cheng, Z. Fang, J. Appl. Polym. Sci. 2011, 120, 298.
- 31G. Z. Papageorgiou, V. Tsanaktsis, D. G. Papageorgiou, S. Exarhopoulos, M. Papageorgiou, D. N. Bikiarisa, Polymer 2014, 55, 3846.
- 32H. Hu, R. Zhang, Y. Jiang, L. Shi, J. Wang, W. Ying, J. Zhu, ACS Sustainable Chem. Eng. 2019, 7, 4255.
- 33H. Hu, R. Zhang, W. Ying, L. Shi, C. Yao, Z. Kong, K. Wang, J. Wang, J. Zhu, Polym. Chem. 2019, 10, 1812.
- 34A. R. Mclauchlin, O. R. Ghita, Appl. Polym. Sci. 2016, 133, 44147.
- 35F. Carrasco, P. Pages, J. Gamez-Perez, O. Santana, M. Maspoch, Polym. Degrad. Stab. 2010, 95, 116.
- 36S. Saeidlou, M. A. Huneault, H. Li, C. B. Park, Prog. Polym. Sci. 2012, 37, 1657.
- 37Z. Huang, L. Bi, Z. Zhang, Y. Han, Mol. Med. Rep. 2012, 6, 709.
- 38S. Farah, D. G. Anderson, R. Langer, Adv. Drug Delivery Rev. 2016, 107, 367.
- 39R. Supthanyakul, N. Kaabbuathong, S. Chirachanchai, Polymer 2016, 105, 1.
- 40J. Chen, J. Wu, J. Qi, H. Wang, ACS Sustainable Chem. Eng. 2019, 7, 1061.
- 41H. Hu, R. Zhang, A. Sousa, Y. Long, W. Ying, J. Wang, J. Zhu, Eur. Polym. J. 2018, 106, 42.
- 42L. Fambri, A. Pegoretti, R. Fenner, S. D. Incardona, C. Migliaresi, Polymer 1997, 38, 79.
- 43A. A. Hamza, I. M. Fouda, M. A. Kabeel, E. A. Seisa, F. M. El-sharkawy, Polym. Test. 1997, 16, 303.
- 44Y. Xu, L. Zou, H. Lu, T. Kang, RSC Adv. 2017, 7, 4000.
- 45H. X. Xiang, Z. Y. Chen, N. Zheng, X. Z. Zhang, L. P. Zhu, Z. Zhou, F. M. Zhu, Int. J. Biol. Macromol. 2018, 122, 1136.