Viability of Low Molecular Weight Lignin in Developing Thiol-Ene Polymer Electrolytes with Balanced Thermomechanical and Conductive Properties
Elyse A. Baroncini
Henry M. Rowan College of Engineering, Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028 USA
U.S. Army Combat Capabilities Development Command, C5ISR Center, Aberdeen Proving Ground, Aberdeen, MD, 21005 USA
Search for more papers by this authorDominique M. Rousseau
Henry M. Rowan College of Engineering, Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028 USA
Search for more papers by this authorChristopher A. Strekis IV
Henry M. Rowan College of Engineering, Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028 USA
Search for more papers by this authorCorresponding Author
Joseph F. Stanzione III
Henry M. Rowan College of Engineering, Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028 USA
E-mail: [email protected]
Search for more papers by this authorElyse A. Baroncini
Henry M. Rowan College of Engineering, Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028 USA
U.S. Army Combat Capabilities Development Command, C5ISR Center, Aberdeen Proving Ground, Aberdeen, MD, 21005 USA
Search for more papers by this authorDominique M. Rousseau
Henry M. Rowan College of Engineering, Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028 USA
Search for more papers by this authorChristopher A. Strekis IV
Henry M. Rowan College of Engineering, Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028 USA
Search for more papers by this authorCorresponding Author
Joseph F. Stanzione III
Henry M. Rowan College of Engineering, Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
Polymer electrolytes with high aromatic content are prepared through thiol-ene polymerization with functionalized, low molecular weight fractions of softwood pine Kraft lignin, and wheat straw/Sarkanda grass soda lignin. Differing solubility, functionality, and aromatic content of the lignin fractions vary the glass transition temperatures of the resulting polymers and the suitability for electrolyte applications. The softwood pine Kraft lignin is used as a precursor for a gel polymer electrolyte (GPE) with room temperature conductivity of 72 × 10–7 S cm–1, while the wheat straw/Sarkanda grass soda lignin is utilized in solid polymer electrolytes (SPEs) with room temperature conductivity values in the range of 5 × 10–5– 7 × 10–5 S cm–1. The lignin-based GPE displays similar conductivity but improved thermal stability to a comparable, recently reported GPE containing an allylated, monophenolic, lignin-derived, vanillin-derived monomer. The lignin-based SPEs exhibit excellent cationic transport with ion transference values up to 0.90. The promising conductivity and ion transference results reveal the potential for use of functionalized, low molecular weight wheat straw/Sarkanda grass soda lignin in SPE applications as a way to improve thermal stability, electrochemical performance, and incorporate an abundant, sustainable resource in a high performance application.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
marc202000477-sup-0001.pdf496.6 KB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. J. Ragauskas, G. T. Beckham, M. J. Biddy, R. Chandra, F. Chen, M. F. Davis, B. H. Davison, R. A. Dixon, P. Gilna, M. Keller, P. Langan, A. K. Naskar, J. N. Saddler, T. J. Tschaplinski, G. A. Tuskan, C. E. Wyman, Science 2014, 344, 709.
- 2T. Saito, R. H. Brown, M. A. Hunt, D. L. Pickel, J. M. Pickel, J. M. Messman, F. S. Baker, M. Keller, A. K. Naskar, Green Chem. 2012, 14, 3295.
- 3J. F. StanzioneIII, P. A. Giangiulio, J. M. Sadler, J. J. La Scala, R. P. Wool, ACS Sustainable Chem. Eng. 2013, 1, 419.
- 4J. F. StanzioneIII, J. M. Sadler, J. J. La Scala, K. H. Reno, R. P. Wool, Green Chem. 2012, 14, 2346.
- 5V. K. Thakur, M. K. Thakur, P. Raghavan, M. R. Kessler, ACS Sustainable Chem. Eng. 2014, 2, 1072.
- 6X. Wu, J. Jiang, C. Wang, J. Liu, Y. Pu, A. Ragauskas, S. Li, B. Yang, Biofuels, Bioprod. Biorefin. 2020, 14, 650.
- 7M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.
- 8L. Long, S. Wang, M. Xiao, Y. Meng, J. Mater. Chem. A 2016, 4, 10038.
- 9E. A. Baroncini, J. F. StanzioneIII, Int. J. Biol. Macromol. 2018, 113, 1041.
- 10E. A. Baroncini, D. M. Rousseau, C. A. StrekisIV, J. F. StanzioneIII, Solid State Ionics 2019, 345, 115161.
- 11S. D. Gong, Y. Huang, H. J. Cao, Y. H. Lin, Y. Li, S. H. Tang, M. S. Wang, X. Li, J. Power Sources 2016, 307, 624.
- 12J. Jeon, J. K. Yoo, S. Yim, K. Jeon, G. H. Lee, J. H. Yun, D. K. Kim, Y. S. Jung, ACS Sustainable Chem. Eng. 2019, 7, 17580.
- 13D. Jeong, H. Shin, J. Shim, J. H. Lee, ChemSusChem 2020, 13, 2642.
- 14M. Zhao, J. Wang, C. Chong, X. Yu, L. Wang, Z. Shi, RSC Adv. 2015, 5, 101115.
- 15M. Fache, E. Darroman, V. Besse, R. Auvergne, S. Caillol, B. Boutevin, Green Chem. 2014, 16, 1987.
- 16P. C. R. Pinto, E. A. Borges da Silva, A. E. Rodrigues, Ind. Eng. Chem. Res. 2011, 50, 741.
- 17S. Jia, B. J. Cox, X. Guo, Z. C. Zhang, J. G. Ekerdt, Holzforschung 2010, 64, 577.
- 18A. Toledano, L. Serrano, J. Labidi, J. Chem. Technol. Biotechnol. 2012, 87, 1593.
- 19M. Meshgini, K. V. Sarkanen, Holzforschung 1989, 43, 239.
- 20M. R. Sturgeon, S. Kim, K. Lawrence, R. S. Paton, S. C. Chmely, M. Nimlos, T. D. Foust, G. T. Beckham, ACS Sustainable Chem. Eng. 2014, 2, 472.
- 21T. Kotake, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2015, 113, 57.
- 22M. Asmadi, H. Kawamoto, S. Saka, J. Anal. Appl. Pyrolysis 2011, 92, 76.
- 23A. Agarwal, M. Rana, J. H. Park, Fuel Process. Technol. 2018, 181, 115.
- 24T. Renders, S. Van den Bosch, S. F. Koelewijn, W. Schutyser, B. F. Sels, Energy Environ. Sci. 2017, 10, 1551.
- 25A. Lourenco, H. Pereira, Intech Open 2017, https://doi.org/10.5772/intechopen.71208.
- 26J. De la Torre, A. Moral, D. Hernandez, E. Cabeza, Ind. Crops Prod. 2013, 45, 58.
- 27Z. Strassberger, P. Prinsen, F. van der Klis, D. S. van Es, S. Tanase, G. Rothenberg, Green Chem. 2014, 17, 325.
- 28M. Belgacem, A. Gandini, Monomers, Polymers and Composites from Renewable Resources, Elsevier Science, Amsterdam 2008.
- 29J. F. StanzioneIII, Ph.D. Dissertation, University of Delaware, 2013.
- 30G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Wiley, Chichester, NY 2001.
- 31Y. Lu, Y. C. Lu, H. Q. Hu, F. J. Xie, X. Y. Wei, X. Fan, J. Spectrosc. 2017, https://doi.org/10.1155/2017/8951658.
- 32J. Dominguez-Robles, T. Tamminen, T. Liitia, M. S. Peresin, A. Rodriguez, A. S. Jaaskelainen, Int. J. Biol. Macromol. 2018, 106, 979.
- 33T. Rashid, C. F. Kait, T. Murugesan, Proc. Eng. 2016, 148, 1312.
- 34E. A. Baroncini, Ph.D. Dissertation, Rowan University, New Jersey, 2019.
- 35W. Thielemans, R. P. Wool, Biomacromolecules 2005, 6, 1895.
- 36W. G. Glasser, C. A. Barnett, P. C. Muller, K. V. Sarkanen, J. Agric. Food Chem. 1983, 31, 921.
- 37L. C. Over, M. A. R. Meier, Green Chem. 2016, 18, 197.
- 38W. Thielemans, R. P. Wool, Biomacromolecules 2005, 6, 1895.
- 39N. Cheng, L. A. Dempere, Z. Tong, ACS Sustainable Chem. Eng. 2016, 4, 5204.
- 40S. F. Koelewijn, S. Van den Bosch, T. Renders, W. Schutyser, B. Lagrain, M. Smet, J. Thomas, W. Dehaen, P. Van Puyvelde, H. Witters, B. F. Sels, Green Chem. 2017, 19, 2561.
- 41F. P. Byrne, S. Jin, G. Paggiola, T. H. M. Petchey Giulia, J. H. Clark, T. J. Farmer, A. J. Hunt, C. R. McElroy, J. Sherwood, Sustainable Chem. Processes 2016, 4, https://doi.org/10.1186/s40508-016-0051-z.
10.1186/s40508-016-0051-z Google Scholar
- 42C. Allegretti, S. Fontanay, K. Rischka, A. Strini, J. Troquet, S. Turri, G. Griffini, P. D'Arrigo, ACS Omega 2019, 4, 4615.
- 43K. M. Diederichsen, E. J. McShane, B. D. McCloskey, ACS Energy Lett. 2017, 2, 2563.
- 44E. Strauss, S. Menkin, D. Golodnitsky, J. Solid State Electrochem. 2017, 7, 349.
- 45S. Mogurampelly, O. Borodin, V. Ganesan, Annu. Rev. Chem. Biomol. Eng. 2016, 7, 349.
- 46O. Borodin, G. D. Smith, Macromolecules 2006, 39, 1620.
- 47L. Z. Long, S. J. Wang, M. Xiao, Y. Z. Meng, J. Mater. Chem. A 2016, 4, 10038.
- 48Y. C. Jung, M. S. Park, D. H. Kim, M. Ue, A. Eftekhari, D. W. Kim, Sci. Rep. 2017, 7, 17482.
- 49L. Long, S. Wang, M. Xiao, Y. Meng, J. Mater. Chem. A 2016, 4, 10038.
- 50M. Jawerth, M. Johansson, S. Lundmark, C. Gioia, M. Lawoko, ACS Sustainable Chem. Eng. 2017, 5, 10918.
- 51I. M. McAninch, G. R. Palmese, J. L. Lenhart, J. J. La Scala, Polym. Eng. Sci. 2015, 55, 2761.
- 52F. M. Smits, Bell Syst. Tech. J. 1958, 37, 711.