Sustainable Photopolymers in 3D Printing: A Review on Biobased, Biodegradable, and Recyclable Alternatives
Corresponding Author
Vincent S. D. Voet
Professorship Sustainable Polymers, NHL Stenden University of Applied Sciences, Van Schaikweg 94, Emmen, 7811 KL The Netherlands
E-mail: [email protected]
Search for more papers by this authorJarno Guit
Professorship Sustainable Polymers, NHL Stenden University of Applied Sciences, Van Schaikweg 94, Emmen, 7811 KL The Netherlands
Search for more papers by this authorKatja Loos
Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, AG, 9747 The Netherlands
Search for more papers by this authorCorresponding Author
Vincent S. D. Voet
Professorship Sustainable Polymers, NHL Stenden University of Applied Sciences, Van Schaikweg 94, Emmen, 7811 KL The Netherlands
E-mail: [email protected]
Search for more papers by this authorJarno Guit
Professorship Sustainable Polymers, NHL Stenden University of Applied Sciences, Van Schaikweg 94, Emmen, 7811 KL The Netherlands
Search for more papers by this authorKatja Loos
Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, AG, 9747 The Netherlands
Search for more papers by this authorAbstract
The global market for 3D printing materials has grown exponentially in the last decade. Today, photopolymers claim almost half of the material sales worldwide. The lack of sustainable resins, applicable in vat photopolymerization that can compete with commercial materials, however, limits the widespread adoption of this technology. The development of “green” alternatives is of great importance in order to reduce the environmental impact of additive manufacturing. This paper reviews the recent evolutions in the field of sustainable photopolymers for 3D printing. It highlights the synthesis and application of biobased resin components, such as photocurable monomers and oligomers, as well as reinforcing agents derived from natural resources. In addition, the design of biologically degradable and recyclable thermoset products in vat photopolymerization is discussed. Together, those strategies will promote the accurate and waste-free production of a new generation of 3D materials for a sustainable plastics economy in the near future.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Chem. Rev. 2017, 117, 10212.
- 2B. Berman, Bus. Horiz. 2012, 55, 155.
- 3U. M. Dilberoglu, B. Gharehpapagh, U. Yaman, M. Dolen, Procedia Manuf. 2017, 11, 545.
10.1016/j.promfg.2017.07.148 Google Scholar
- 4B. Core, 3D Printing Materials 2019-2029: Technology and Market Analysis, IDTechEx, Cambridge, UK 2019.
- 5A. Van Wijk, I. van Wijk, 3D Printing with Biomaterials: Towards a Sustainable and Circular Economy, IOS Press, Amsterdam, The Netherlands 2015.
10.3233/978-1-61499-486-2-i Google Scholar
- 6S. K. Bhatia, K. W. Ramadurai, 3D Printing and Bio-Based Materials in Global Health, Springer Nature, Cham, Switzerland 2017.
10.1007/978-3-319-58277-1 Google Scholar
- 7S. C. Ligon-Auer, M. Schwentenwein, C. Gorsche, J. Stampfl, R. Liska, Polym. Chem. 2016, 7, 257.
- 8E. Yang, S. Miao, J. Zhong, Z. Zhang, D. K. Mills, L. G. Zhang, Polym. Rev. 2018, 58, 668.
- 9W. Li, L. S. Mille, J. A. Robledo, T. Uribe, V. Huerta, Y. S. Zhang, Adv. Healthcare Mater. 2020, 9, 2000156.
- 10B. van Bochove, D. Grijpma, J. Biomater. Sci., Polym. Ed. 2019, 30, 77.
- 11T. Liu, B. Zhao, J. Zhang, Polymer 2020, 194, 122392.
- 12J. Liu, L. Sun, W. Xu, Q. Wang, S. Yu, J. Sun, Carbohydr. Polym. 2019, 207, 297.
- 13 ISO/ASTM52900-15, Standard Terminology for Additive Manufacturing - General Principles - Terminology, ASTM International, West Conshohocken, PA 2015.
- 14C. W. Hull (UVP, Inc.), U.S. Patent 4575330, 1986.
- 15G. A. Appuhamillage, N. Chartrain, V. Meenakshisundaram, K. D. Feller, C. B. William, T. E. Long, Ind. Eng. Chem. Res. 2019, 58, 15109.
- 16J. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, J. M. DeSimone, Science 2015, 347, 1349.
- 17M. Layani, X. Wang, S. Magdassi, Adv. Mater. 2018, 30, 1706344.
- 18J. Zhang, P. Xiao, Polym. Chem. 2018, 9, 1530.
- 19A. Bagheri, J. Jin, ACS Appl. Polym. Mater. 2019, 1, 593.
- 20D. S. Branciforti, S. Lazzaroni, C. Milanese, M. Castiglioni, F. Auricchio, D. Pasani, D. Dondi, Addit. Manuf. 2019, 25, 317.
- 21B. Wu, A. Sufi, R. G. Biswas, A. Hisatsune, V. Moxley-Paquette, P. Ning, R. Soong, A. P. Dicks, A. J. Simpson, ACS Sustainable Chem. Eng. 2020, 8, 1171.
- 22B. Liang, R. Li, C. Zhang, Z. Yang, T. Yuan, Ind. Crops Prod. 2019, 135, 170.
- 23S. Miao, W. Zhu, N. J. Castro, M. Nowicki, X. Zhou, H. Cui, J. P. Fischer, L. G. Zhang, Sci. Rep. 2016, 6, 27226.
- 24M. Lebedevaite, J. Ostrauskaitė, E. Skliutas, M. Malinauskas, Polymers 2019, 11, 116.
- 25J. Guit, M. B. L. Tavares, J. Hul, C. Ye, K. Loos, J. Jager, R. Folkersma, V. S. D. Voet, ACS Appl. Polym. Mater. 2020, 2, 949.
- 26V. S. D. Voet, T. Strating, G. H. M. Schnelting, P. Dijkstra, M. Tietema, J. Xu, A. J. J. Woortman, K. Loos, J. Jager, R. Folkersma, ACS Omega 2018, 3, 1403.
- 27V. S. D. Voet, G. H. M. Schnelting, J. Xu, K. Loos, R. Folkersma, J. Jager, J. Visualized Exp. 2018, 139, e58177.
- 28S. D. Silbert, P. Simpson, R. Setien, M. Holthaus, J. J. La Scala, C. Ulven, D. C. Webster, ACS Appl. Polym. Mater. 2020, 2, 2910.
- 29Y. Cui, J. Yang, D. Lei, J. Su, Ind. Eng. Chem. Res. 2020, 59, 11381.
- 30Y. Hu, Q. Shang, C. Bo, P. Jia, G. Feng, F. Zhang, C. Liu, Y. Zhou, ACS Omega 2019, 4, 12505.
- 31J. T. Sutton, K. Rajan, D. P. Harper, S. C. Chmely, ACS Appl. Mater. Interfaces 2018, 10, 36456.
- 32A. W. Bassett, A. E. Honnig, C. M. Breyta, I. C. Dunn, J. J. La Scala, K. F. Stanzione, ACS Sustainable Chem. Eng. 2020, 8, 5626.
- 33R. Ding, Y. Du, R. B. Goncalves, L. F. Francis, T. M. Reineke, Polym. Chem. 2019, 10, 1067.
- 34J.-T. Miao, S. Peng, M. Ge, Y. Li, J. Zhong, Z. Weng, L. Wu, L. Zheng, ACS Sustainable Chem. Eng. 2020, 8, 9415.
- 35A. Cosola, R. Conti, H. Grützmacher, M. Sangermano, I. Roppolo, C. F. Pirri, A. Chiappone, Macromol. Mater. Eng. 2020, 305, 2000350.
- 36F. A. M. M. Gonçalves, C. S. M. F. Costa, I. G. P. Fabela, D. Farinha, H. Faneca, P. N. Simões, A. C. Serra, P. J. Bártolo, J. F. J. Coelho, Biofabrication 2014, 6, 035024.
- 37X. Ma, X. Qu, W. Zhu, Y.-S. Li, S. Yuan, H. Zhang, J. Liu, P. Wang, C. S. E. Lai, F. Zanella, G.-S. Feng, F. Sheikh, S. Chien, S. Chen, Proc. Natl. Acad. Sci. USA 2016, 113, 2206.
- 38S. Krishnamoorthy, S. Wadnap, B. Noorani, H. Xu, C. Xu, Eur. Polym. J. 2020, 124, 109487.
- 39A. C. Weems, K. R. Delle Chiaie, J. C. Worch, C. J. Stubbs, A. P. Dove, Polym. Chem. 2019, 10, 5959.
- 40A. C. Weems, K. R. Delle Chiaie, R. Yee, A. P. Dove, Biomacromolecules 2020, 21, 163.
- 41J. W. Seo, S. R. Shin, Y. J. Park, H. Bae, Tissue Eng. Regener. Med. 2020, 17, 423.
- 42Y. Shen, H. Tang, X. Huang, R. Hang, X. Zhang, Y. Wang, X. Yao, Carbohydr. Polym. 2020, 235, 115970.
- 43C. Noè, C. Tonda-Turo, A. Chiappone, M. Sangermano, M. Hakkarainen, Polymers 2020, 12, 1359.
- 44G. Melilli, I. Carmagnola, C. Tonda-Turo, F. Pirri, G. Ciardelli, M. Sangermano, M. Hakkarainen, A. Chiappone, Polymers 2020, 12, 1655.
- 45S. H. Kim, Y. K. Yeon, J. M. Lee, J. R. Chao, Y. J. Lee, Y. B. Seo, M. T. Sultan, O. J. Lee, J. S. Lee, S. Yoon, I.-S. Hong, G. Khang, S. J. Lee, J. J. Yoo, C. H. Park, Nat. Commun. 2018, 9, 1620.
- 46S. Kumar, M. Hofmann, B. Steinmann, E. J. Foster, C. Weder, ACS Appl. Mater. Interfaces 2012, 4, 5399.
- 47X. Feng, Z. Yang, S. Chmely, Q. Wang, S. Wang, Y. Xie, Carbohydr. Polym. 2017, 169, 272.
- 48N. B. Palaganas, J. D. Mangadlao, A. C. C. de Leon, J. O. Palaganas, K. D. Pangilinan, Y. J. Lee, R. C. Advincula, ACS Appl. Mater. Interfaces 2017, 9, 34314.
- 49B. Wang, G. Ding, K. Chem, S. Jia, J. Wei, Y. Wang, R. He, Z. Shao, J. Appl. Polym. Sci. 2020, 137, e49164.
- 50D. Mohan, M. S. Sajab, H. Kaco, S. B. Bakarudin, A. Mohamed Noor, Nanomaterials 2019, 9, 1726.
- 51S. Zhang, M. Li, N. Hao, A. J. Ragauskas, ACS Omega 2019, 4, 20197.
- 52F. Ibrahim, D. Mohan, M. S. Sajab, S. B. Bakarudin, H. Kaco, Polymers 2019, 11, 1544.
- 53V. B. Morris, S. Nimbalkar, M. Younesi, P. McClellan, O. Akkus, Ann. Biomed. Eng. 2017, 45, 286.
- 54Y.-L. Cheng, F. Chen, Mater. Sci. Eng., C 2017, 81, 66.
- 55R. D. Maalihan, B. B. Pajarito, R. C. Advincula, Mater. Today: Proc. 2020, https://doi.org/10.1017/j.matpr.2020.05.063.
- 56M. N. Cooke, J. P. Fisher, D. Dean, C. Rimnac, A. G. Mikos, J. Biomed. Mater. Res., Part B 2003, 64B, 65.
- 57K.-W. Lee, S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, L. Lu, Biomacromolecules 2007, 8, 1077.
- 58B. Farkas, M. Rodio, I. Romano, A. Diaspro, R. Intartaglia, S. Beke, Beilstein J. Nanotechnol. 2015, 6, 2217.
- 59J.-H. Kim, J. W. Lee, W.-S. Yun, J. Mech. Sci. Technol. 2017, 31, 2581.
- 60J. W. Lee, G. Ahn, J. Y. Kim, D.-W. Cho, J. Mater. Sci.: Mater. Med. 2010, 21, 3195.
- 61L. Elomaa, S. Teixeira, R. Hakala, H. Korhonen, D. W. Grijpma, J. V. Seppälä, Acta Biomater. 2011, 7, 3850.
- 62L. Elomaa, A. Kokkari, T. Närhi, J. V. Seppälä, Compos. Sci. Technol. 2013, 74, 99.
- 63S.-J. Lee, H.-W. Kang, J. K. Park, J.-W. Rhie, S. K. Hahn, D.-W. Cho, Biomed. Microdevices 2008, 10, 233.
- 64S. B. G. Blanquer, S. Sharifi, D. W. Grijpma, J. Appl. Biomater. Funct. Mater. 2012, 10, 177.
- 65S. Schüller-Ravoo, J. Feijen, D. W. Grijpma, Macromol. Biosci. 2011, 11, 1662.
- 66S. Schüller-Ravoo, S. M. Texeira, J. Feijen, D. W. Grijpma, A. A. Poot, Macromol. Biosci. 2013, 13, 1711.
- 67F. P. W. Melchels, J. Feijen, D. W. Grijpma, Biomaterials 2009, 30, 3801.
- 68A. Ronca, L. Ambrosio, D. W. Grijpma, Acta Biomater. 2013, 9, 5989.
- 69T. Matsuda, M. Mizutani, S. C. Arnold, Macromolecules 2000, 33, 795.
- 70Z. Feng, Y. Li, L. Hao, Y. Yang, T. Tang, D. Tang, W. Xiong, J. Nanomater. 2019, 2019, 9710264.
- 71T. Matsuda, M. Mizutani, J. Biomed. Mater. Res. 2002, 62, 395.
- 72T. Kuhnt, R. M. García, S. Camarero-Espinosa, A. Dias, A. T. ten Cate, C. A. van Blitterswijk, L. Moroni, M. B. Baker, Biomater. Sci. 2019, 7, 4984.
- 73F. P. W. Melchels, A. H. Velders, J. Feijen, D. W. Grijpma, Macromolecules 2010, 43, 8570.
- 74T. M. Seck, F. P. W. Melchels, J. Feijen, D. W. Grijpma, J. Controlled Release 2010, 148, 34.
- 75E. M. Wilts, A. Gula, C. Davis, N. Chartrain, C. B. Williams, T. E. Long, Eur. Polym. J. 2020, 130, 109693.
- 76P. K. Samantaray, A. Little, D. M. Haddleton, T. McNally, B. Tan, Z. Sun, W. Huang, Y. Ji, C. Wan, Green Chem. 2020, 22, 4055.
- 77B. Farkas, I. Romano, L. Ceseracciu, A. Diaspro, F. Brandi, S. Beke, Mater. Sci. Eng., C 2015, 55, 14.
- 78A. Oesterreicher, J. Wiener, M. Roth, A. Moser, R. Gmeiner, M. Edler, G. Pinter, T. Griesser, Polym. Chem. 2016, 7, 5169.
- 79P. T. Smith, B. Narupai, J. H. Tsui, S. C. Milik, R. T. Shafranek, D.-H. Kim, A. Nelson, Biomacromolecules 2020, 21, 484.
- 80C. J. Kloxin, C. N. Bowman, Chem. Soc. Rev. 2013, 42, 7161.
- 81W. Denissen, J. M. Winne, F. E. Du Prez, Chem. Sci. 2016, 7, 30.
- 82G. M. Scheutz, J. J. Lessard, M. B. Sims, B. S. Sumerlin, J. Am. Chem. Soc. 2019, 141, 16181.
- 83M. Capelot, D. Montarnal, F. Tournilhac, L. Leibler, J. Am. Chem. Soc. 2012, 134, 7664.
- 84P. Heidarian, A. Z. Kouzani, A. Kaynak, M. Paulino, B. Nasri-Nasrabadi, ACS Biomater. Sci. Eng. 2019, 5, 2688.
- 85Q. Shi, K. Yu, X. Kuang, X. Mu, C. K. Dunn, M. L. Dunn, T. Wang, H. Q. Qi, Mater. Horiz. 2017, 4, 598.
- 86B. Zhang, K. Kowsari, A. Serjouei, M. L. Dunn, Q. Ge, Nat. Commun. 2018, 9, 1831.
- 87A. Li, A. Challapalli, G. Li, Sci. Rep. 2019, 9, 7621.
- 88C. Lu, C. Wang, J. Yu, J. Wang, F. Chu, ChemSusChem 2020, 13, 893.
- 89T. Billiet, M. Vandenhaute, J. Schelfhout, S. van Vlierberghe, P. Dubruel, Biomaterials 2012, 33, 6020.