Enabling Oxygen–Sulfur Exchange Reaction to Produce Semicrystalline Copolymers from Carbon Disulfide and Ethylene Oxide
Jia-Liang Yang
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYing Wang
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorXiao-Han Cao
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCheng-Jian Zhang
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorZheng Chen
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Xing-Hong Zhang
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]
Search for more papers by this authorJia-Liang Yang
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYing Wang
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorXiao-Han Cao
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCheng-Jian Zhang
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorZheng Chen
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Xing-Hong Zhang
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]
Search for more papers by this authorAbstract
This work describes the first example of semicrystalline poly(thiocarbonate)s from carbon disulfide (CS2) and ethylene oxide (EO), two mass producible low-cost monomers. Lewis acid/base pairs (LPs) exhibit high activity (EO conversion up to >99%, 8 h) in catalyzing the copolymerization under low Lewis pair/monomer ratio of 1:1500. Oxygen–sulfur exchange reaction (O–S ER) during the copolymerization of CS2 and EO, the generation and mutual copolymerization with COS, CO2, and episulfide, is harnessed to introduce crystallizable segments [SC(O)O and SC(S)S] in the copolymer. The type of Lewis base is found to have a great impact on the chain microstructure and the crystalline properties. The formed copolymers with melting point from 117.7 to 245.3 °C are obtained. The maximum crystallinity is estimated to be 78% based on the powder wide-angle X-ray diffraction pattern. This work provides a general method to prepare semicrystalline sulfur-containing polymers.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
marc202000472-sup-0001-SuppMat.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Y. Tang, E. Y. X. Chen, Chem 2019, 5, 284.
- 2 Ellen MacArthur Foundation, https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics-catalysing-action.
- 3 Polyethylene: Analysis of PE production in China, http://futures.eastmoney.com/a/201901091022981160.html.
- 4D. J. Arriola, E. M. Carnahan, P. D. Hustad, R. L. Kuhlman, T. T. Wenzel, Science 2006, 312, 714.
- 5S. Lambert, M. Wagner, Chem. Soc. Rev. 2017, 46, 6855.
- 6P. Bordes, E. Pollet, L. Avérous, Prog. Polym. Sci. 2009, 34, 125.
- 7S. J. Poland, D. J. Darensbourg, Green Chem. 2017, 19, 4990.
- 8Y. Q. Zhu, C. Romain, C. K. Williams, Nature 2016, 540, 354.
- 9J. B. Zhu, E. M. Watson, J. Tang, E. Y. X. Chen, Science 2018, 360, 398.
- 10M. Luo, Y. Li, Y. Y. Zhang, X. H. Zhang, Polymer 2016, 82, 406.
- 11Y. Y. Wang, D. J. Darensbourg, Coord. Chem. Rev. 2018, 372, 85.
- 12E. M. López-Vidal, G. L. Gregory, G. Kociok-Köhn, A. Buchard, Polym. Chem. 2018, 9, 1577.
- 13S. Inoue, H. Koinuma, T. Tsuruta, in 17th Polymer Symp. Japan, Preprints 1968, p. 383.
- 14N. Adachi, Y. Kida, K. Shikata, J. Polym. Sci., Part A: Polym. Chem. 1977, 15, 937.
- 15X. H. Zhang, F. Liu, X. K. Sun, S. Chen, B. Y. Du, G. R. Qi, K. M. Wan, Macromolecules 2008, 41, 1587.
- 16W. Kaminsky, A. Funck, H. Haehnsen, Dalton Trans. 2009, 41, 8803.
- 17M. Luo, X. H. Zhang, D. J. Darensbourg, Macromolecules 2015, 48, 5526.
- 18J. Diebler, H. Komber, L. Häussler, A. Lederer, T. Werner, Macromolecules 2016, 49, 4723.
- 19J. L. Yang, L. F. Hu, X. H. Cao, Y. Wang, X. H. Zhang, Chin. J. Chem. 2020, 38, 269.
- 20D. J. Darensbourg, S. J. Wilson, A. D. Yeung, Macromolecules 2013, 46, 8102.
- 21M. Luo, X. H. Zhang, B. Y. Du, Q. Wang, Z. Q. Fan, Macromolecules 2013, 46, 5899.
- 22M. Luo, X. H. Zhang, D. J. Darensbourg, Acc. Chem. Res. 2016, 49, 2209.
- 23C. J. Zhang, J. L. Yang, L. F. Hu, X. H. Zhang, Chin. J. Chem. 2018, 36, 625.
- 24C. J. Zhang, H. L. Wu, Y. Li, J. L. Yang, X. H. Zhang, Nat. Commun. 2018, 9, 2137.
- 25C. J. Zhang, X. H. Zhang, Chin. J. Polym. Sci. 2019, 37, 951.
- 26W. M. Ren, T. J. Yue, M. R. Li, Z. Q. Wan, X. B. Lu, Macromolecules 2017, 50, 63.
- 27H. L. Wu, J. L. Yang, M. Luo, R. Y. Wang, J. T. Xu, B. Y. Du, X. H. Zhang, D. J. Darensbourg, Macromolecules 2016, 49, 8863.
- 28A. Okada, S. Kikuchi, K. Nakano, K. Nishioka, K. Nozaki, T. Yamada, Chem. Lett. 2010, 39, 1066.
- 29M. Hong, J. W. Chen, E. Y. X. Chen, Chem. Rev. 2018, 118, 10551.
- 30Z. Xiao, Y. Wang, X. Chen, J. Long, Z. Wei, J. Chem. Sci. 2017, 129, 1595.
- 31G. Dousse, H. Lavayssière, J. Satgé, Synth. React. Inorg. Met.-Org. Chem. 1989, 19, 49.
- 32Y. Zhang, H. Mu, L. Pan, X. Wang, Y. Li, ACS Catal. 2018, 8, 5963.
- 33Y. Zhang, H. Mu, X. Wang, L. Pan, Y. Li, ChemCatChem 2019, 11, 2329.
- 34H. Ohtaki, F. Deplace, G. D. Vo, A. M. LaPointe, F. Shimizu, T. Sugano, E. J. Kramer, G. H. Fredrickson, G. W. Coates, Macromolecules 2015, 48, 7489.
- 35C. Tan, C. Chen, Angew. Chem., Int. Ed. 2019, 58, 7192.
- 36B. K. Long, J. M. Eagan, M. Mulzer, G. W. Coates, Angew. Chem., Int. Ed. 2016, 55, 7106.
- 37S. Dai, S. Zhou, W. Zhang, C. Chen, Macromolecules 2016, 49, 8855.
- 38Y. Ota, S. Ito, J.-I. Kuroda, Y. Okumura, K. Nozaki, J. Am. Chem. Soc. 2014, 136, 11898.
- 39K. Nakano, G. Tatsumi, K. Nozaki, J. Am. Chem. Soc. 2007, 129, 15116.