Formation, Structure, and Mechanical Performance of Silk Nanofibrils Produced by Heat-Induced Self-Assembly
Yuelong Xiao
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorYawen Liu
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China
Search for more papers by this authorWenwen Zhang
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China
Search for more papers by this authorPing Qi
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China
Search for more papers by this authorJing Ren
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China
Search for more papers by this authorCorresponding Author
Ying Pei
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shengjie Ling
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYuelong Xiao
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorYawen Liu
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China
Search for more papers by this authorWenwen Zhang
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China
Search for more papers by this authorPing Qi
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China
Search for more papers by this authorJing Ren
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China
Search for more papers by this authorCorresponding Author
Ying Pei
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shengjie Ling
School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The heat-induced self-assembly of silk fibroin (SF) is studied by combing fluorescence assessment, infrared nanospectroscopy, wide-angle X-ray scattering, and Derjaguin−Muller−Toporov coupled with atomic force microscopy. Several fundamental issues regarding the formation, structure, and mechanical performance of silk nanofibrils (SNFs) under heat-induced self-assembly are discussed. Accordingly, SF in aqueous solution is rod-like in shape and not micellar. The formation of SNFs occurs through nucleation-dependent aggregation, but the assembly period is variable and irregular. SF shows inherent fractal growth, and this trend is critical for the short-term assembly. The long-term assembly of SF, however, mainly involves an elongation growth process. SNFs produced by different methods, such as ethanol treatment and heat incubation, have similar secondary structure and mechanical properties. These investigations improve the in-depth understanding of fundamental issues related to self-assembly of SNFs, and thus provide inspiration and guidance in designing of silk nanomaterials.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
marc202000435-sup-0001-SuppMat.pdf421.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Ling, D. L. Kaplan, M. J. Buehler, Nat. Rev. Mater. 2018, 3, 18016.
- 2S. Ling, W. Chen, Y. Fan, K. Zheng, K. Jin, H. Yu, M. J. Buehler, D. L. Kaplan, Prog. Polym. Sci. 2018, 85, 1.
- 3Y. Wang, J. Guo, L. Zhou, C. Ye, F. G. Omenetto, D. L. Kaplan, S. Ling, Adv. Funct. Mater. 2018, 28, 1805305.
- 4C. P. Brown, C. Harnagea, H. S. Gill, A. J. Price, E. Traversa, S. Licoccia, F. Rosei, ACS Nano 2012, 6, 1961.
- 5S. W. Cranford, J. R. Soc., Interface 2013, 10, 20130148.
- 6G. Xu, L. Gong, Z. Yang, X. Liu, Soft Matter 2014, 10, 2116.
- 7W. Qiu, A. Patil, F. Hu, X. Y. Liu, Small 2019, 15, 1903948.
- 8J. Ren, Y. Wang, Y. Yao, Y. Wang, X. Fei, P. Qi, S. Lin, D. L. Kaplan, M. J. Buehler, S. Ling, Chem. Rev. 2019, 119, 12279.
- 9S. Keten, Z. P. Xu, B. Ihle, M. J. Buehler, Nat. Mater. 2010, 9, 359.
- 10Z. S. C. Fu, V. Fritz, Chem. Commun. 2009, 43, 6515.
- 11X. F. H. Zhao, H. Gao, Appl. Phys. Lett. 2007, 90, 073112.
- 12F. Zhang, Q. Lu, J. Ming, H. Dou, Z. Liu, B. Zuo, M. Qin, F. Li, D. L. Kaplan, X. Zhang, J. Mater. Chem. B 2014, 2, 3879.
- 13S. Ling, K. Jin, D. L. Kaplan, M. J. Buehler, Nano Lett. 2016, 16, 3795.
- 14H. J. Jin, D. L. Kaplan, Nature 2003, 424, 1057.
- 15C. Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Nucleic, Acids Res. 2000, 28, 2413.
- 16S. Bai, S. Liu, C. Zhang, W. Xu, Q. Lu, H. Han, D. Kaplan, H. Zhu, Acta Biomater. 2013, 9, 7806.
- 17S. Ling, C. Li, J. Adamcik, Z. Shao, X. Chen, R. Mezzenga, Adv. Mater. 2014, 26, 4569.
- 18Z. Gong, L. Huang, Y. Yang, X. Chen, Z. Shao, Chem. Commun. 2009, 48, 7506.
- 19Z. Gong, Y. Yang, L. Huang, X. Chen, Z. Shao, Soft Matter 2010, 6, 1217.
- 20I. Greving, M. Cai, F. Vollrath, H. C. Schniepp, Biomacromolecules 2012, 13, 676.
- 21J. Zhong, M. Ma, W. Li, J. Zhou, Z. Yan, D. He, Biopolymers 2014, 101, 1181.
- 22S. Bai, X. Zhang, Q. Lu, W. Sheng, L. Liu, B. Dong, D. L. Kaplan, H. Zhu, Biomacromolecules 2014, 15, 3044.
- 23S. Bai, S. Liu, C. Zhang, W. Xu, Q. Lu, H. Han, D. L. Kaplan, H. Zhu, Acta Biomater. 2013, 9, 7806.
- 24J. G. Hardy, T. R. Scheibel, Prog. Polym. Sci. 2010, 35, 1093.
- 25S. Ling, C. X. Li, J. Adamcik, S. Wang, Z. Shao, X. Chen, R. Mezzenga, ACS Macro Lett. 2014, 3, 146.
- 26S. Ling, K. Jin, Z. Qin, C. Li, K. Zheng, Y. Zhao, Q. Wang, D. L. Kaplan, M. J. Buehler, Adv. Mater. 2018, 30, 1802306.
- 27S. Ling, Z. Qin, W. Huang, S. Cao, D. L. Kaplan, M. J. Buehler, Sci. Adv. 2017, 3, e1601939.
- 28G. Meisl, T. C. T. Michaels, S. Linse, T. P. J. Knowles, Amyloid Proteins: Methods and Protocols, Springer, New York 2018.
- 29S. Ling, N. Dinjaski, D. Ebrahimi, J. Y. Wong, D. L. Kaplan, M. J. Buehler, ACS Biomater. Sci. Eng. 2016, 2, 1298.
- 30X. Chen, D. P. Knight, Z. Shao, Soft Matter 2009, 5, 2777.
- 31X. Chen, Z. Shao, D. P. Knight, F. Vollrath, Proteins 2007, 68, 223.
- 32G. Li, P. Zhou, Z. Shao, X. Xie, X. Chen, H. Wang, L. Chunyu, T. Yu, Eur. J. Biochem. 2001, 268, 6600.
- 33J. Li, X. Liu, Adv. Funct. Mater. 2010, 20, 3196.
- 34J. Adamcik, R. Mezzenga, Angew. Chem., Int. Ed. 2018, 57, 8370.
- 35A. Matsumoto, A. Lindsay, B. Abedian, Macromol. Biosci. 2008, 8, 1006.
- 36Z. Lin, W. Huang, J. Zhang, Proc. Natl. Acad. Sci. USA 2009, 106, 8906.
- 37J. Adamcik, J. M. Jung, J. Flakowski, P. De Los Rios, G. Dietler, R. Mezzenga, Nat. Nanotechnol. 2010, 5, 423.
- 38J. Zhong, Y. Liu, J. Ren, Y. Tang, Z. Qi, X. Zhou, X. Chen, Z. Shao, M. Chen, D. L. Kaplan, S. Ling, ACS Biomater. Sci. Eng. 2019, 5, 3161.
- 39A. Dazzi, C. B. Prater, Chem. Rev. 2017, 117, 5146.
- 40F. S. Ruggeri, G. Longo, S. Faggiano, E. Lipiec, A. Pastore, G. Dietler, Nat. Commun. 2015, 6, 7831.
- 41F. S. Ruggeri, S. Vieweg, U. Cendrowska, G. Longo, A. Chiki, H. A. Lashuel, G. Dietler, Sci. Rep. 2016, 6, 31155.
- 42S. Ling, Z. Qi, D. P. Knight, Z. Shao, X. Chen, Biomacromolecules 2011, 12, 3344.
- 43S. Ling, Z. Qi, D. P. Knight, Y. Huang, L. Huang, H. Zhou, Z. Shao, X. Chen, Biomacromolecules 2013, 14, 1885.
- 44L. F. Drummy, B. L. Farmer, R. R. Naik, Soft Matter 2007, 3, 877.
- 45Y. Takahashi, M. Gehoh, K. Yuzuriha, Int. J. Biol. Macromol. 1999, 24, 127.
- 46K. Zheng, J. Zhong, Z. Qi, S. Ling, D. L. Kaplan, Adv. Funct. Mater. 2018, 28, 1806380.
- 47T. P. J. Knowles, M. J. Buehler, Nat. Nanotechnol. 2011, 6, 469.
- 48X. Hu, Q. Lu, D. L. Kaplan, P. Cebe, Macromolecules 2009, 42, 2079.