Lignin-Based Solid Polymer Electrolytes: Lignin-Graft-Poly(ethylene glycol)
Hailing Liu
Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University College of Engineering, 2525 Pottsdamer Street, Suite A131, Tallahassee, FL, 32310 USA
Search for more papers by this authorLogan Mulderrig
Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University College of Engineering, 2525 Pottsdamer Street, Suite A131, Tallahassee, FL, 32310 USA
Aero-Propulsion, Mechatronics, and Energy (AME) Center, Florida State University, 2003 Levy Avenue, Tallahassee, FL, 32310 USA
Search for more papers by this authorCorresponding Author
Daniel Hallinan Jr.
Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University College of Engineering, 2525 Pottsdamer Street, Suite A131, Tallahassee, FL, 32310 USA
Aero-Propulsion, Mechatronics, and Energy (AME) Center, Florida State University, 2003 Levy Avenue, Tallahassee, FL, 32310 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hoyong Chung
Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University College of Engineering, 2525 Pottsdamer Street, Suite A131, Tallahassee, FL, 32310 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorHailing Liu
Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University College of Engineering, 2525 Pottsdamer Street, Suite A131, Tallahassee, FL, 32310 USA
Search for more papers by this authorLogan Mulderrig
Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University College of Engineering, 2525 Pottsdamer Street, Suite A131, Tallahassee, FL, 32310 USA
Aero-Propulsion, Mechatronics, and Energy (AME) Center, Florida State University, 2003 Levy Avenue, Tallahassee, FL, 32310 USA
Search for more papers by this authorCorresponding Author
Daniel Hallinan Jr.
Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University College of Engineering, 2525 Pottsdamer Street, Suite A131, Tallahassee, FL, 32310 USA
Aero-Propulsion, Mechatronics, and Energy (AME) Center, Florida State University, 2003 Levy Avenue, Tallahassee, FL, 32310 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hoyong Chung
Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University College of Engineering, 2525 Pottsdamer Street, Suite A131, Tallahassee, FL, 32310 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Lignin is an aromatic-rich biomass polymer that is cheap, abundant, and sustainable. However, its application in the solid electrolyte field is rare due to challenges in well-defined polymer synthesis. Herein, the synthesis of lignin-graft-poly(ethylene glycol) (PEG) and its conductivity test for a solid electrolyte application are demonstrated. The main steps of synthesis include functionalization of natural lignin's hydroxyl to alkene, followed by graft-copolymerization of PEG thiol to the lignin via photoredox thiol-ene reaction. Two lignin-graft-PEGs are prepared having 22 wt% lignin (lignin-graft-PEG 550) and 34 wt% lignin (lignin-graft-PEG 2000). Then, new polymer electrolytes for conductivity tests are prepared via addition of lithium bis-trifluoromethanesulfonimide. The polymer graft electrolytes exhibit ionic conductivity up to 1.4 × 10−4 S cm−1 at 35 °C. The presence of lignin moderately impacts conductivity at elevated temperature compared to homopolymer PEG. Furthermore, the ionic conductivity of lignin-graft-PEG at ambient temperature is significantly higher than homopolymer PEG precedents.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
marc202000428-sup-0001-SuppMat.pdf367.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. W. Tricker, M. J. Stellato, T. T. Kwok, N. S. Kruyer, Z. Wang, S. Nair, V. M. Thomas, M. J. Realff, A. S. Bommarius, C. Sievers, ChemSusChem 2020, 13, 4624.
- 2A. G. Vishtal, A. Kraslawski, BioResources 2011, 6, 3547.
- 3S. L. Hilburg, A. N. Elder, H. Chung, R. Ferebee, M. R. Bockstaller, N. R. Washburn, Polymer 2014, 55, 995.
- 4H. Chung, N. R. Washburn, Green Mater. 2012, 1, 137.
- 5W. Zhao, B. Simmons, S. Singh, A. Ragauskas, G. Cheng, Green Chem. 2016, 18, 5693.
- 6B. M. Upton, A. M. Kasko, Chem. Rev. 2016, 116, 2275.
- 7Y. Z. Xu, L. Yuan, Z. K. Wang, P. A. Wilbon, C. P. Wang, F. X. Chu, C. B. Tang, Green Chem. 2016, 18, 4974.
- 8D. Kai, M. J. Tan, P. L. Chee, Y. K. Chua, Y. L. Yap, X. J. Loh, Green Chem. 2016, 18, 1175.
- 9H. Liu, H. Chung, J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3515.
- 10D. Kai, K. Zhang, S. S. Liow, X. J. Loh, ACS Appl. Bio Mater. 2018.
- 11H. Liu, H. Chung, Macromolecules 2016, 49, 7246.
- 12S. Sen, S. Patil, D. S. Argyropoulos, Green Chem. 2015, 17, 4862.
- 13H. Pohjanlehto, H. M. Setälä, D. E. Kiely, A. G. McDonald, J. Appl. Polym. Sci. 2014, 131.
- 14Y. Kang, Z. Chen, B. Wang, Y. Yang, Ind. Crops Prod. 2014, 56, 105.
- 15J. Nakano, Y. Izuta, T. Orita, H. Hatakeyama, K. Kobashigawa, K. Teruya, S. Hirose, Sen'i Gakkaishi 1997, 53, 416.
- 16L. Long, S. Wang, M. Xiao, Y. Meng, J. Mater. Chem. A 2016, 4, 10038.
- 17A. M. Stephan, K. S. Nahm, Polymer 2006, 47, 5952.
- 18D. T. Hallinan, S. A. Mullin, G. M. Stone, N. P. Balsara, J. Electrochem. Soc. 2013, 160, A464.
- 19D. T. Hallinan Jr, A. Rausch, B. McGill, Chem. Eng. Sci. 2006, 154, 34.
- 20Q. Lu, Y. He, Q. Yu, B. Li, Y. V. Kaneti, Y. Yao, F. Kang, Q. Yang, Adv. Mater. 2017, 29, 1604460.
- 21P. Barai, K. Higa, V. Srinivasan, Phys. Chem. Chem. Phys. 2017, 19, 20493.
- 22H. Liu, H. Chung, ACS Sustainable Chem. Eng. 2017, 5, 9160.
- 23H. Chung, A. Al-Khouja, N. R. Washburn, in Green Polymer Chemistry: Biocatalysis and Materials II (Eds: H. N. Cheng, R. A. Gross, P. B. Smith), American Chemical Society, Washington, DC 2013, p. 373.
- 24H. Liu, N. Mohsin, S. Kim, H. Chung, J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2121.
- 25K. Öberg, Y. Hed, I. J. Rahmn, J. Kelly, P. Löwenhielm, M. Malkoch, Chem. Commun. 2013, 49, 6938.
- 26T. T.-M. Kwok, J. R. Bright, M. J. Realff, A. S. Bommarius, BioResources 2019, 14, 5988.
- 27T. T. Kwok, J. R. Bright, S. R. Vora, N. J. Chrisandina, C. O. Luettgen, M. J. Realff, A. S. Bommarius, ChemSusChem 2020, 13, 267.
- 28C. S. Lancefield, N. J. Westwood, Green Chem. 2015, 17, 4980.
- 29A. Moreno, M. H. Sipponen, Mater. Horiz. 2020, 7, 2237.
- 30M. S. Ganewatta, H. N. Lokupitiya, C. Tang, Polymers 2019, 11, 1176.
- 31K. Timachova, H. Watanabe, N. P. Balsara, Macromolecules 2015, 48, 7882.
- 32M. Singh, O. Odusanya, G. M. Wilmes, H. B. Eitouni, E. D. Gomez, A. J. Patel, V. L. Chen, M. J. Park, P. Fragouli, H. Iatrou, N. Hadjichristidis, D. Cookson, N. P. Balsara, Macromolecules 2007, 40, 4578.
- 33M. Marzantowicz, J. R. Dygas, F. Krok, J. L. Nowiński, A. Tomaszewska, Z. Florjańczyk, E. Zygadło-Monikowska, J. Power Sources 2006, 159, 420.
- 34S. Lascaud, M. Perrier, A. Vallee, S. Besner, J. Prud'Homme, M. Armand, Macromolecules 1994, 27, 7469.
- 35A. A. Teran, M. H. Tang, S. A. Mullin, N. P. Balsara, Solid State Ionics 2011, 203, 18.
- 36W. S. Young, W. F. Kuan, T. H. Epps, J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1.
- 37M. Doyle, T. F. Fuller, J. Newman, Electrochim. Acta 1994, 39, 2073.