Volume 42, Issue 3 2000342
Communication

Electrical Writing to Three-Dimensional Pattern Dynamic Polysaccharide Hydrogel for Programmable Shape Deformation

Xinyi Zhu

Xinyi Zhu

School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China

Search for more papers by this author
Si Wu

Si Wu

School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China

Search for more papers by this author
Chen Yang

Chen Yang

School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China

Search for more papers by this author
Hongbing Deng

Hongbing Deng

School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China

Search for more papers by this author
Yumin Du

Yumin Du

School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China

Search for more papers by this author
Xiaowen Shi

Corresponding Author

Xiaowen Shi

School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China

E-mail: [email protected]

Search for more papers by this author
First published: 17 August 2020
Citations: 9

Abstract

The ability to pattern and actuate hydrogels is essential for biomimetics, soft robotics, and biosensors. Here an electrical writing technique with the capability to create both surface and across thickness patterns in dynamic chitosan-H+/agarose hydrogel by electronically generated pH gradient is introduced. The diffusible pH cues deprotonate and re-assemble chitosan chains by hydrogen bonds, changing the electrical writing domains from original loose structure to a dense layer and resulting in different mechanical stress and swell ability that causes the hydrogel to deform. The deformable trend can be modulated by writing depth and selective writing area on the surface, and significantly enhanced by temperature increment. Finally, a dual electrical writing process to create three-dimensional patterns and demonstrate programmable shape transition by differing patterns is performed.

Conflict of Interest

The authors declare no conflict of interest.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.