Electrical Writing to Three-Dimensional Pattern Dynamic Polysaccharide Hydrogel for Programmable Shape Deformation
Xinyi Zhu
School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China
Search for more papers by this authorSi Wu
School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China
Search for more papers by this authorChen Yang
School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China
Search for more papers by this authorHongbing Deng
School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China
Search for more papers by this authorYumin Du
School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China
Search for more papers by this authorCorresponding Author
Xiaowen Shi
School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China
E-mail: [email protected]
Search for more papers by this authorXinyi Zhu
School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China
Search for more papers by this authorSi Wu
School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China
Search for more papers by this authorChen Yang
School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China
Search for more papers by this authorHongbing Deng
School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China
Search for more papers by this authorYumin Du
School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China
Search for more papers by this authorCorresponding Author
Xiaowen Shi
School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The ability to pattern and actuate hydrogels is essential for biomimetics, soft robotics, and biosensors. Here an electrical writing technique with the capability to create both surface and across thickness patterns in dynamic chitosan-H+/agarose hydrogel by electronically generated pH gradient is introduced. The diffusible pH cues deprotonate and re-assemble chitosan chains by hydrogen bonds, changing the electrical writing domains from original loose structure to a dense layer and resulting in different mechanical stress and swell ability that causes the hydrogel to deform. The deformable trend can be modulated by writing depth and selective writing area on the surface, and significantly enhanced by temperature increment. Finally, a dual electrical writing process to create three-dimensional patterns and demonstrate programmable shape transition by differing patterns is performed.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
marc202000342-sup-0001-SuppMat.pdf256 KB | Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Janbaz, R. Hedayati, A. A. Zadpoor, Mater. Horiz. 2016, 3, 536.
- 2X. X. Le, W. Lu, J. W. Zhang, T. Chen, Adv. Sci. 2019, 6, 1801584.
- 3Z. B. Hu, X. M. Zhang, Y. Li, Science 1995, 269, 525.
- 4Q. Zhao, Y. H. Liang, L. Ren, Z. L. Yu, Z. H. Zhang, F. Qiu, L. Q. Ren, J. Mater. Chem. B 2018, 6, 1260.
- 5S. B. Liu, P. F. Wang, G. Y. Huang, L. Wang, J. X. Zhou, T. J. Lu, F. Xu, M. Lin, Soft Matter 2015, 11, 449.
- 6M. Kim, B. Jung, J. H. Park, Biomaterials 2012, 33, 668.
- 7H. Xia, J. A. Wang, Y. Tian, Q. D. Chen, X. B. Du, Y. L. Zhang, Y. He, H. B. Sun, Adv. Mater. 2010, 22, 3204.
- 8X. Y. Chen, H. H. Dai, Acta Mech. Sin. 2015, 31, 627.
- 9Y. C. Zhang, J. X. Liao, T. Wang, W. X. Sun, Z. Tong, Adv. Funct. Mater. 2018, 28, 1707245.
- 10Q. Zhao, H. J. Qi, T. Xie, Prog. Polym. Sci. 2015, 49–50, 79.
- 11Q. Shi, H. Liu, D. D. Tang, Y. H. Li, X. J. Li, F. Xu, NPG Asia Mater. 2019, 11, 64.
- 12Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, A. Harada, Nat. Commun. 2012, 3, 1270.
- 13S. A. Morin, R. F. Shepherd, S. W. Kwok, A. A. Stokes, A. Nemiroski, G. M. Whitesides, Science 2012, 337, 828.
- 14Y. Hu, Z. Li, T. Lan, W. Chen, Adv. Mater. 2016, 28, 10548.
- 15K. Sano, Y. Ishida, T. Aida, Angew. Chem., Int. Ed. 2018, 57, 2532.
- 16S. W. Xiao, M. Z. Zhang, X. M. He, L. Huang, Y. X. Zhang, B. P. Ren, M. Q. Zhong, Y. Chang, J. T. Yang, J. Zheng, ACS Appl. Mater. Interfaces 2018, 10, 21642.
- 17X. X. Le, Y. C. Zhang, W. Lu, L. Wang, J. Zheng, I. Ali, J. W. Zhang, Y. J. Huang, M. J. Serpe, X. T. Yang, X. D. Fan, T. Chen, Macromol. Rapid Commun. 2018, 39, 1800019.
- 18Y. Liu, M. Takafuji, H. Ihara, M. F. Zhu, M. S. Yang, K. Gu, W. L. Guo, Soft Matter 2012, 8, 3295.
- 19J. Kim, J. A. Hanna, M. Byun, C. D. Santangelo, R. C. Hayward, Science 2012, 335, 1201.
- 20X. Peng, Y. Li, Q. Zhang, C. Shang, Q. W. Bai, H. L. Wang, Adv. Funct. Mater. 2016, 26, 4491.
- 21E. Palleau, D. Morales, M. D. Dickey, O. D. Velev, Nat. Commun. 2013, 4, 2257.
- 22Z. A. Zhao, X. Kuang, C. Yuan, H. J. Qi, D. N. Fang, ACS Appl. Mater. Interfaces 2018, 10, 19932.
- 23X. Peng, T. Q. Liu, Q. Zhang, C. Shang, Q. W. Bai, H. L. Wang, Adv. Funct. Mater. 2017, 27, 1701962.
- 24X. Du, H. Cui, Q. Zhao, J. Wang, H. Chen, Y. Wang, Research 2019, 2019, UNSP 6398296.
- 25S. Wu, K. Yan, Y. A. Zhao, C. C. Tsai, J. Shen, W. E. Bentley, Y. Chen, H. B. Deng, Y. M. Du, G. F. Payne, X. W. Shi, Adv. Funct. Mater. 2018, 28, 1803139.
- 26Y. Dong, J. Wang, X. K. Guo, S. S. Yang, M. O. Ozen, P. Chen, X. Liu, W. Du, F. Xiao, U. Demirci, B. F. Liu, Nat. Commun. 2019, 10, 4087.
- 27Y. Freile-Pelegrin, T. Madera-Santana, D. Robledo, L. Veleva, P. Quintana, J. A. Azamar, Polym. Degrad. Stab. 2007, 92, 244.
- 28K. Okuyama, K. Noguchi, T. Miyazawa, T. Yui, K. Ogawa, Macromolecules 1997, 30, 5849.
- 29J. H. Kim, S. B. Lee, S. J. Kim, Y. M. Lee, Polymer 2002, 43, 7549.
- 30R. H. Xie, P. G. Ren, J. Hui, F. Ren, L. Z. Ren, Z. F. Sun, Carbohydr. Polym. 2016, 138, 222.