Synthesis of a Renewable, Waste-Derived Nonisocyanate Polyurethane from Fish Processing Discards and Cashew Nutshell-Derived Amines
Courtney M. Laprise
Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7 Canada
Search for more papers by this authorKelly A. Hawboldt
Department of Process Engineering, Memorial University of Newfoundland, St. John's, Newfoundland, A1C 5S7 Canada
Search for more papers by this authorCorresponding Author
Francesca M. Kerton
Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7 Canada
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Christopher M. Kozak
Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7 Canada
E-mail: [email protected], [email protected]
Search for more papers by this authorCourtney M. Laprise
Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7 Canada
Search for more papers by this authorKelly A. Hawboldt
Department of Process Engineering, Memorial University of Newfoundland, St. John's, Newfoundland, A1C 5S7 Canada
Search for more papers by this authorCorresponding Author
Francesca M. Kerton
Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7 Canada
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Christopher M. Kozak
Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7 Canada
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Waste-derived fish oil (FO) can be epoxidized and reacted with CO2 to produce a cyclic carbonate containing material. Upon reaction with a bioderived amine, this leads to the formation of nonisocyanate polyurethane materials. The FO used is extracted from the by-products produced at fish processing plants, including heads, bones, skin, and viscera. Three different methods are used for the epoxidation of the FO: (i) oxidation by 3-chloroperoxybenzoic acid, (ii) oxidation by hydrogen peroxide and acetic acid, catalyzed by sulfuric acid, and (iii) oxidation by hydrogen peroxide catalyzed by formic acid. Synthesized FO epoxides are reacted with CO2 to yield FO cyclic carbonates with high conversions. The products are characterized by 1H and 13C NMR spectroscopy, IR spectroscopy, thermogravimetric analysis, and viscometry. Using a biomass-derived amine, nonisocyanate polyurethane materials are synthesized. This process can lead to new opportunities in waste management, producing valuable materials from a resource that is otherwise underutilized.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
marc202000339-sup-0001-SuppMat.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) F. M. Kerton, in Chemical Processes For A Sustainable Future (Eds: T. M. Letcher, J. L. Scott, D. A. Patterson), Royal Society of Chemistry Publishing, Cambridge 2014, Ch. 17; b) F. M. Kerton, Y. Liu, K. W. Omari, K. Hawboldt, Green Chem. 2013, 15, 860; c) F. M. Kerton, N. Yan, in Fuels, Chemicals and Materials from the Oceans and Aquatic Sources (Eds: F. M. Kerton, N. Yan), Wiley, Chichester 2017, p. 1; d) N. Yan, X. Chen, Nature 2015, 524, 155.
- 2K. Hawboldt, I. A. Adeoti, in Fuels, Chemicals and Materials from the Oceans and Aquatic Sources (Eds: F. M. Kerton, N. Yan), Wiley, Chichester 2017, p. 229.
- 3P. Jayasinghe, K. Hawboldt, Sustain. Energy Technol. Assess. 2013, 4, 36.
10.1016/j.seta.2013.09.001 Google Scholar
- 4I. A. Adeoti, K. Hawboldt, Fuel 2015, 158, 183.
- 5a) H. Büttner, C. Grimmer, J. Steinbauer, T. Werner, ACS Sustainable Chem. Eng. 2016, 4, 4805; b) S. Samanta, S. Selvakumar, J. Bahr, D. S. Wickramaratne, M. Sibi, B. J. Chisholm, ACS Sustainable Chem. Eng. 2016, 4, 6551; c) C. Carré, Y. Ecochard, S. Caillol, L. Averous, ChemSusChem 2019, 12, 3410; d) M. Y. Yao, Y. B. Huang, X. Niu, H. Pan, ACS Sustainable Chem. Eng. 2016, 4, 3840; e) J. L. Zheng, F. Burel, T. Salmi, B. Taouk, S. Leveneur, Ind. Eng. Chem. Res. 2015, 54, 10935; f) U. Biermann, U. Bornscheuer, M. A. R. Meier, J. O. Metzger, H. J. Schafer, Angew. Chem., Int. Ed. 2011, 50, 3854; g) S. M. Danov, O. A. Kazantsev, A. L. Esipovich, A. S. Belousov, A. E. Rogozhin, E. A. Kanakov, Catal. Sci. Technol. 2017, 7, 3659; h) A. S. More, D. V. Palaskar, E. Cloutet, B. Gadenne, C. Alfos, H. Cramail, Polym. Chem. 2011, 2, 2796; i) M. Alves, B. Grignard, S. Gennen, C. Detrembleur, C. Jerome, T. Tassaing, RSC Adv. 2015, 5, 53629; j) N. Tenhumberg, H. Büttner, B. Schäffner, D. Kruse, M. Blumenstein, T. Werner, Green Chem. 2016, 18, 3775; k) H. Büttner, J. Steinbauer, C. Wulf, M. Dindaroglu, H. G. Schmalz, T. Werner, ChemSusChem 2017, 10, 1076.
- 6a) M. Bähr, R. Mülhaupt, Green Chem. 2012, 14, 483; b) B. Grignard, J. M. Thomassin, S. Gennen, L. Poussard, L. Bonnaud, J. M. Raquez, P. Dubois, M. P. Tran, C. B. Park, C. Jerome, C. Detrembleur, Green Chem. 2016, 18, 2206; c) S. Panchireddy, B. Grignard, J. M. Thomassin, C. Jerome, C. Detrembleur, Polym. Chem. 2018, 9, 2650; d) J. Ke, X. Li, F. Wang, S. Jiang, M. Kang, J. Wang, Q. Li, Z. Wang, RSC Adv. 2017, 7, 28841; e) L. Poussard, J. Mariage, B. Grignard, C. Detrembleur, C. Jerome, C. Calberg, B. Heinrichs, J. De Winter, P. Gerbaux, J. M. Raquez, L. Bonnaud, P. Dubois, Macromolecules 2016, 49, 2162; f) M. S. Kathalewar, P. B. Joshi, A. S. Sabnis, V. C. Malshe, RSC Adv. 2013, 3, 4110.
- 7a) H. Blattmann, M. Fleischer, M. Bähr, R. Mülhaupt, Macromol. Rapid Commun. 2014, 35, 1238; b) Y. Q. Zhu, C. Romain, C. K. Williams, Nature 2016, 540, 354.
- 8a) C. M. Kozak, K. Ambrose, T. S. Anderson, Coord. Chem. Rev. 2018, 376, 565; b) Y. Wang, D. J. Darensbourg, Coord. Chem. Rev. 2018, 372, 85; c) Q.-W. Song, Z.-H. Zhou, L.-N. He, Green Chem. 2017, 19, 3707.
- 9a) L. Peña Carrodeguas, À. Cristòfol, J. M. Fraile, J. A. Mayoral, V. Dorado, C. I. Herrerías, A. W. Kleij, Green Chem. 2017, 19, 3535; b) C. Martin, G. Fiorani, A. W. Kleij, ACS Catal. 2015, 5, 1353.
- 10a) M. Alves, B. Grignard, R. Mereau, C. Jerome, T. Tassaing, C. Detrembleur, Catal. Sci. Technol. 2017, 7, 2651; b) H. Büttner, L. Longwitz, J. Steinbauer, C. Wulf, T. Werner, Top. Curr. Chem. 2017, 375, 50; c) G. Fiorani, W. S. Guo, A. W. Kleij, Green Chem. 2015, 17, 1375.
- 11a) R. Wang, T. P. Schuman, eXPRESS Polym. Lett. 2013, 7, 272; b) L. Yang, H. Dai, A. Yi, B. Lin, G. Li, J. Therm. Anal. Calorim. 2008, 93, 875.
- 12J. Langanke, L. Greiner, W. Leitner, Green Chem. 2013, 15, 1173.
- 13C. Bueno-Ferrer, M. C. Garrigos, A. Jimenez, Polym. Degrad. Stab. 2010, 95, 2207.
- 14J. L. Audic, L. Lemiègre, Y. M. Corre, J. Appl. Polym. Sci. 2014, https://doi.org/10.1002/app.39983.
- 15a) I. Javni, D. P. Hong, Z. S. Petrović, J. Appl. Polym. Sci. 2008, 108, 3867; b) B. Tamami, S. Sohn, G. L. Wilkes, J. Appl. Polym. Sci. 2004, 92, 883.
- 16H. Y. Lü, K. Wu, Y. C. Zhao, L. W. Hao, W. P. Liao, C. L. Deng, W. Z. Ren, J. CO2 Util. 2017, 22, 400.
- 17G. Pappenberger, H.-P. Hohmann, in Biotechnology of Food and Feed Additives. Advances in Biochemical Engineering/Biotechnology (Eds: H. Zorn, P. Czermak), Vol. 143, Springer, Berlin 2013, p. 143.
- 18A. R. Mahendran, N. Aust, G. Wuzella, U. Muller, A. Kandelbauer, J. Polym. Environ. 2012, 20, 926.
- 19C.-W. F. Cheng, D. Bedner, H. T. Wang, WO2000001659A1, 2000.
- 20W. Y. Perez-Sena, X. S. Cai, N. Kebir, L. Vernieres-Hassimi, C. Serra, T. Salmi, S. Leveneur, Chem. Eng. J. 2018, 346, 271.
- 21 Cardolite Corporation, https://www.cardolite.com/products/ (accessed: July 2020).