Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review
Suvrajyoti Mishra
S. Mishra, Dr. L. Unnikrishnan, Prof. S. K. Nayak, Dr. S. Mohanty, Laboratory for Advanced Research in Polymeric Materials, School for Advanced Research in Polymers, Central Institute of Plastics Engineering and Technology, B-25, CNI Complex, Bhubaneswar, 751024 Odisha, India
Search for more papers by this authorCorresponding Author
Lakshmi Unnikrishnan
S. Mishra, Dr. L. Unnikrishnan, Prof. S. K. Nayak, Dr. S. Mohanty, Laboratory for Advanced Research in Polymeric Materials, School for Advanced Research in Polymers, Central Institute of Plastics Engineering and Technology, B-25, CNI Complex, Bhubaneswar, 751024 Odisha, India
E-mail: [email protected]Search for more papers by this authorSanjay Kumar Nayak
S. Mishra, Dr. L. Unnikrishnan, Prof. S. K. Nayak, Dr. S. Mohanty, Laboratory for Advanced Research in Polymeric Materials, School for Advanced Research in Polymers, Central Institute of Plastics Engineering and Technology, B-25, CNI Complex, Bhubaneswar, 751024 Odisha, India
Search for more papers by this authorSmita Mohanty
S. Mishra, Dr. L. Unnikrishnan, Prof. S. K. Nayak, Dr. S. Mohanty, Laboratory for Advanced Research in Polymeric Materials, School for Advanced Research in Polymers, Central Institute of Plastics Engineering and Technology, B-25, CNI Complex, Bhubaneswar, 751024 Odisha, India
Search for more papers by this authorSuvrajyoti Mishra
S. Mishra, Dr. L. Unnikrishnan, Prof. S. K. Nayak, Dr. S. Mohanty, Laboratory for Advanced Research in Polymeric Materials, School for Advanced Research in Polymers, Central Institute of Plastics Engineering and Technology, B-25, CNI Complex, Bhubaneswar, 751024 Odisha, India
Search for more papers by this authorCorresponding Author
Lakshmi Unnikrishnan
S. Mishra, Dr. L. Unnikrishnan, Prof. S. K. Nayak, Dr. S. Mohanty, Laboratory for Advanced Research in Polymeric Materials, School for Advanced Research in Polymers, Central Institute of Plastics Engineering and Technology, B-25, CNI Complex, Bhubaneswar, 751024 Odisha, India
E-mail: [email protected]Search for more papers by this authorSanjay Kumar Nayak
S. Mishra, Dr. L. Unnikrishnan, Prof. S. K. Nayak, Dr. S. Mohanty, Laboratory for Advanced Research in Polymeric Materials, School for Advanced Research in Polymers, Central Institute of Plastics Engineering and Technology, B-25, CNI Complex, Bhubaneswar, 751024 Odisha, India
Search for more papers by this authorSmita Mohanty
S. Mishra, Dr. L. Unnikrishnan, Prof. S. K. Nayak, Dr. S. Mohanty, Laboratory for Advanced Research in Polymeric Materials, School for Advanced Research in Polymers, Central Institute of Plastics Engineering and Technology, B-25, CNI Complex, Bhubaneswar, 751024 Odisha, India
Search for more papers by this authorAbstract
Polymeric piezoelectric composites for energy harvesting applications are considered a significant research field which provides the convenience of mechanical flexibility, suitable voltage with sufficient power output, lower manufacturing cost, and rapid processing compared to ceramic-based composites. This review focuses majorly on the basic theory and principles behind piezoelectric energy harvesting (PEH) devices, followed by specified materials used for the different devices. Different structural configurations associated with fabrication of PEH devices are discussed in detail along with their major advantages and drawbacks. Numerous classes of piezoelectric polymers such as polyvinylidene fluoride, polylactic acid, cellulose, polyamides, polyurea, polyurethanes, and their composites used for energy harvesting applications as a productive alternative of lead-based piezo-ceramics, are extensively addressed and explored. Additionally, current global and Indian scenarios associated with PEH devices, major challenges associated with them, and the future perspective of such devices are also reported in this review.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1G. T. Zack Mester, FutureUsesof the Piezoelectric Effect for Energy Production 2012, 1, https://www.academia.edu/9864968/future_uses_of_the_piezoelectric_effect_for_energy_production_how_the_piezoelectric_effect_works (accessed: June 2018).
- 2D. Shen, Ph.D Thesis, Auburn University, Auburn, Alabama 2009, 195.
- 3S. P. Beeby, M. J. Tudor, N. M. White, Meas. Sci. Technol. 2006, 17, R175.
- 4K. Uchino, T. Ishii, Ferroelectrics 2010, 400, 305.
- 5S. Priya, H.-C. Song, Y. Zhou, R. Varghese, A. Chopra, S.-G. Kim, I. Kanno, L. Wu, D. S. Ha, J. Ryu, R. G. Polcawich, Energy Harvest. Syst. 2017, 4, 3.
10.1515/ehs-2016-0028 Google Scholar
- 6A. Ledoux, J. J. Connor, A. Ledoux, Ph.D. Thesis, Massachusetts Institute of Technology, USA 2011.
- 7A. Khan, Z. Abas, H. Soo Kim, I. K. Oh, Smart Mater. Struct. 2016, 25, 053002.
- 8K. S. Ramadan, D. Sameoto, S. Evoy, Smart Mater. Struct. 2014, 23, 033001.
- 9Z. Ounaies, J. S. Harrison, Piezoelectric Polymers, NASA/CR-2001-211422, ICASE Report No. 2001–43, USA 2001, 1, https://ntrs.nasa.gov/search.jsp?R=20020044745 (accessed: June 2018).
- 10H. S. Kim, J. H. Kim, J. Kim, Int. J. Precis. Eng. Manuf. 2011, 12, 1129.
- 11R. Caliò, U. Rongala, D. Camboni, M. Milazzo, C. Stefanini, G. de Petris, C. Oddo, Sensors 2014, 14, 4755.
- 12H. Li, C. Tian, Z. D. Deng, Appl. Phys. Rev. 2014, 1, 041301.
- 13Z. Alaei, B.Sc. Thesis, KTH Royal Institute of Technology (Stockholm, Sweden) 2016.
- 14P. Dineva, D. Gross, R. Müller, T. Rangelov, Dynamic Fracture of Piezoelectric Materials: Solution of Time-Harmonic Problems via BIEM, Vol. 212, Springer Science & Business Media, Switzerland 2014.
10.1007/978-3-319-03961-9 Google Scholar
- 15R. Ahmed, F. Mir, S. Banerjee, Smart Mater. Struct. 2017, 26, 085031.
- 16Noliac, Piezo basics, Text. Res. J. 2012, 3, 1, http://www.noliac.com/fileadmin/user_upload/documents/Tutorials/Tutorials_Piezo_basics.pdf 9 (accessed: May 2018).
- 17A. Toprak, O. Tigli, Appl. Phys. Rev. 2014, 1, 031104.
- 18G. Zhang, S. Gao, H. Liu, AIP Adv. 2016, 6, 095208.
- 19 12 Emerging Technologies that May Help Power the Future, http://www.rh.gatech.edu/features/12-emerging-technologies-may-help-power-future (accessed: June 2018).
- 20 Piezoelectric Energy Harvesting: Developments, Challenges, Future, https://www.idtechex.com/research/articles/piezoelectric-energy-harvestingdevelopments-challenges-future-00005074.asp (accessed: June 2018).
- 21 R&D to Boost Global Piezoelectric Smart Materials Market, https://www.ceramicindustry.com/articles/95444-rd-to-boost-global-piezoelectric-smart-materials-market (accessed: June 2018).
- 22Global Piezoelectric Smart Materials Market 2017–2021, https://www.technavio.com/report/global-piezoelectric-smart-materials-market(accessed: June 2018).
- 23J. Akedo, J. Park, Y. Kawakami, Jpn. J. Appl. Phys. 2018, 57, 07LA02.
- 24M. Stewart, P. M. Weaver, M. Cain, Appl. Phys. Lett. 2012, 100, 073901.
- 25 The Future of Eco-Friendly Energy with Piezoelectric Energy Harvesting, http://www.lgcnsblog.com/features/the-future-of-eco-friendly-energy-with-piezoelectric-energy-harvesting/#sthash.T9PKco7t.dpbs (accessed: June 2018).
- 26 Piezotech, Fluorinated Materials of the Future, https://www.arkema.com/en/products/product-families/rd/piezotech/ (accessed: July 2018).
- 27 Top 5 Vendors in the Global Piezoelectric Smart Materials Market: Technavio, https://www.businesswire.com/news/home/20170829005953/en/Top-5-Vendors-Global-Piezoelectric-Smart-Materials (accessed: July 18).
- 28 Expanding Markets for Piezoelectrics, https://www.ceramicindustry.com/articles/93845-expanding-markets-for-piezoelectrics (accessed: June 2018).
- 29Q. Zhou, K. H. Lam, H. Zheng, W. Qiu, K. K. Shung, Prog. Mater. Sci. 2014, 66, 87.
- 30J. Chen, R. Panda, Proc. IEEE Ultrason. Symp. 2005, 1, 235.
- 31M. D. Donato, Ph.D. Thesis, Politecnico di Torino, Turin, Italy 2015
- 32F. Narita, M. Fox, Adv. Eng. Mater. 2018, 20, 1700743.
- 33P. Martins, A. C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 2014, 39, 683.
- 34 Piezo Film Sensors Technical Manual, https://www.sparkfun.com/datasheets/Sensors/Flex/MSI-techman.pdf;2006 (accessed: June 2018).
- 35C. Wan, C. R. Bowen, J. Mater. Chem. A, 2017, 5, 3091.
- 36A. Jain, K. J. Prashanth, A. K. Sharma, P. N. Rashmi, A. Jain, Polym. Eng. Sci. 2015, 55, 1589.
- 37S. Crossley, R. A. Whiter, S. Kar-Narayan, Mater. Sci. Technol. 2014, 30, 1613.
- 38J. Gomes, J. S. Nunes, V. Sencadas, S. Lanceros-Mendez, Smart Mater. Struct. 2010, 19, 065010.
- 39Hari Singh Nalwa, Ferroelectric Polymers: Chemistry: Physics, and Applications, 1st ed., CRC Press, Taylor and Francis Group, London 1995.
10.1201/9781482295450 Google Scholar
- 40P. Martins, J. S. Nunes, G. Hungerford, D. Miranda, A. Ferreira, V. Sencadas, S. Lanceros-Méndez, Phys. Lett. A, London 2009, 373, 177.
- 41K. Koga, H. Ohigashi, J. Appl. Phys. 1986, 59, 2142.
- 42R. G. Kepler, R. A. Anderson, Adv. Phys. 1992, 41, 1.
- 43J. L. Lutkenhaus, K. McEnnis, A. Serghei, T. P. Russell, Macromolecules 2010, 43, 3844.
- 44R. Iftekharul, Ph.D. Thesis , Ecole Nationale Supérieure des Mines de Saint-Etienne, Saint-Étienne, France 2015.
- 45H. Xu, J. Appl. Polym. Sci. 2001, 80, 2259.
- 46E. Fukada, Jpn. J. Appl. Phys. 1998, 37, 2775.
- 47Y. Huan, Y. Liu, Y. Yang, Polym. Eng. Sci. 2007, 47, 1630.
- 48W. Künstler, M. Wegener, M. Seiß, R. Gerhard-Multhaupt, Appl. Phys. A: Mater. Sci. Process. 2001, 73, 641.
- 49M. Aldas, G. Boiteux, G. Seytre, M. Polymères, B. Istil, B. Latarjet, presented at the 10th IEEE Int. Conf. on Solid Dielectrics, Potsdam, Germany, July 2010, 1, https://doi.org/10.1109/ICSD.2010.5568042.
- 50Y. Wang, B. Neese, Q. M. Zhang, C. Huang, J. West, Proc. IEEE Ultrason. Symp. 2007, 2606, https://doi.org/10.1109/ULTSYM.2007.656.
- 51F. Bernard, L. Gimeno, B. Viala, B. Gusarov, O. Cugat, Multidiscip. Digital Publishing Inst. Proc. 2017, 1, 335.
- 52E. Fukada, T. Ochiai, Jpn. J. Appl. Phys. 1998, 37, 2775.
- 53S. Hikosaka, H. Ishikawa, Y. Ohki, Electron. Commun. Jpn. 2011, 94, 1.
- 54P. Frübing, A. Kremmer, R. Gerhard-Multhaupt, A. Spanoudaki, J. Chem. Phys. 2006, 125, 214701.
- 55Y. Takase, J. W. Lee, J. I. Scheinbeim, B. A. Newman, Macromolecules 1991, 24, 6644.
- 56S. Rajala, T. Siponkoski, E. Sarlin, M. Mettänen, M. Vuoriluoto, A. Pammo, J. Juuti, O. J. Rojas, S. Franssila, S. Tuukkanen, ACS Appl. Mater. Interfaces 2016, 8, 15607.
- 57J. Kim, S. Yun, S. K. Mahadeva, K. Yun, S. Y. Yang, M. Maniruzzaman, Sensors 2010, 10, 1473.
- 58L. Csoka, I. C. Hoeger, O. J. Rojas, I. Peszlen, J. J. Pawlak, P. N. Peralta, ACS Macro Lett. 2012, 1, 867.
- 59S. H. Hassan, L. H. Voon, T. S. Velayutham, L. Zhai, H. C. Kim, J. Kim, J. Renewable Mater. 2018, 6, 1.
- 60L. Lebrun, D. Guyomar, B. Guiffard, P.J. Cottinet, C. Putson, Sens. Actuators, A. 2009, 153, 251.
- 61K. Wongtimnoi, B. Guiffard, A. Bogner-Van de Moortèle, L. Seveyrat, C. Gauthier, J. Y. Cavaillé, Compos. Sci. Technol. 2011, 71, 885.
- 62M. Morimoto, Y. Koshiba, M. Misaki, K. Ishida, Appl. Phys. Express 2015, 8, 101501.
- 63J. Virtanen, L. Ukkonen, T. Björninen, A. Z. Elsherbeni, L. Sydänheimo, IEEE Trans. Instrum. Meas. 2011, 60, 2768.
- 64E. Kabir, M. Khatun, L. Nasrin, M. J. Raihan, M. Rahman, J. Phys. D: Appl. Phys. 2017, 50, 163002.
- 65T. Greeshma, R. Balaji, S. Jayakumar, Ferroelectr., Lett. Sect. 2013, 40, 41.
- 66K. I. Kakimoto, K. Fukata, H. Ogawa, Sens. Actuators, A. 2013, 200, 21.
- 67Y. Hou, Y. Deng, Y. Wang, H. Gao, RSC Adv. 2015, 5, 72090.
- 68C.-G. Wu, G.-Q. Cai, W.-B. Luo, Q.-X. Peng, X.-Y. Sun, W.-L. Zhang, J. Adv. Dielectr. 2013, 03, 1350004.
10.1142/S2010135X13500045 Google Scholar
- 69V. Tiwari, G. Srivastava, Ceram. Int. 2015, 41, 8008.
- 70A. K. Batra, M. E. Edwards, A. Alomari, A. Elkhaldy, Am. J. Mater. Sci. 2015, 5, 55.
- 71R. Li, Z. Zhao, Z. Chen, J. Pei, Mater. Express 2017, 7, 536.
- 72M. Mishra, A. Roy, S. Dash, S. Mukherjee, IOP Conference Series: Materials Science and Engineering, IOP Publishing 2018, 338, 012026.
10.1088/1757-899X/338/1/012026 Google Scholar
- 73J. Lindholm, A. Brink, M. Hupa, Fire Mater. 2016, 3, 498.
- 74J. Kim, K. J. Loh, J. P. Lynch, Sens. Smart Struct. Technol. Civil, Mech. Aerosp. Syst. 2008, 6932, 693232.
- 75K. Ke, P. Pötschke, D. Jehnichen, D. Fischer, B. Voit, Polymer 2014, 55, 611.
- 76M. ElAchaby, F. Z. Arrakhiz, S. Vaudreuil, E. M. Essassi, A. Qaiss, Appl. Surf. Sci. 2012, 258, 7668.
- 77Alamusi, J. Xue, L. Wu, N. Hu, J. Qiu, C. Chang, S. Atobe, H. Fukunaga, T. Watanabe, Y. Liu, H. Ning, J. Li, Y. Li, Y. Zhao, Nanoscale 2012, 4, 7250.
- 78A. Batth, A. Mueller, L. Rakesh, A. Mellinger, presented at the 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena(CEIDP), Montreal, QC, Canada, October 2012, 28–31.
- 79M. Ataur Rahman, B.-C. Lee, D.-T. Phan, G.-S. Chung, Smart Mater. Struct. 2013, 22, 085017.
- 80M. A. Rahman, G. S. Chung, J. Alloys Compd. 2013, 581, 724.
- 81L. Huang, C. Lu, F. Wang, L. Wang, RSC Adv. 2014, 4, 45220.
- 82L. Wu, W. Yuan, N. Hu, Z. Wang, C. Chen, J. Qiu, J. Ying, Y. Li, J. Phys. D: Appl. Phys. 2014, 47, 135302.
- 83V. Bhavanasi, V. Kumar, K. Parida, J. Wang, P. S. Lee, ACS Appl. Mater. Interfaces 2016, 8, 521.
- 84N. Maity, A. Mandal, A. K. Nandi, Polymer 2016, 103, 83.
- 85M. Pusty, A. Sharma, L. Sinha, A. Chaudhary, P. Shirage, Chemistry Select 2017, 2, 2774.
10.1002/slct.201602046 Google Scholar
- 86J. S. Dodds, F. N. Meyers, K. J. Loh, IEEE Sens. J. 2012, 12, 1889.
- 87Z. W. Ouyang, E. C. Chen, T. M. Wu, Mater. Chem. Phys. 2015, 149,172.
- 88W. C. GanW. H. A. Abd Majid, Smart Mater. Struct. 2014, 23, 045026.
- 89R. Bhunia, S. Das, S. Dalui, S. Hussain, R. Paul, R. Bhar, A. K. Pal, Appl. Phys. A 2016, 122, 637.
- 90J. Peihai, W. Ling, L. Lizhu, Z. Xiaorui, High Voltage 2016, 1, 166.
- 91H. J. Chen, S. Han, C. Liu, Z. Luo, H. P. D. Shieh, R. S. Hsiao, B. R. Yang, Sens. Actuators, A. 2016, 245, 135.
- 92K. Choi, W. Choi, C. Yu, Y. T. Park, J. Nanomater. 2017, 2017, 1.
- 93A. Issa, M. Al-Maadeed, A. Luyt, D. Ponnamma, M. Hassan, C. 2017, 3, 30.
10.3390/c3040030 Google Scholar
- 94B. Jaleh, A. Jabbari, Appl. Surf. Sci. 2014, 320, 339.
- 95L. Yang, J. Qiu, H. Ji, K. Zhu, J. Wang, Composites, Part A 2014, 65, 125.
- 96L. Yang, H. Ji, K. Zhu, J. Wang, J. Qiu, Compos. Sci. Technol. 2016, 123, 259.
- 97S. K. Karan, D. Mandal, B. B. Khatua, Nanoscale. 2015, 7, 10655.
- 98E. H. Abdelhamid, O. D. Jayakumar, V. Kothari, B. P. Mandal, R. Rao, V. M. Naik, R. Naik, A. K. Tyagi, RSC Adv. 2016, 6, 20089.
- 99A. Al-Saygh, D. Ponnamma, M. A. A. AlMaadeed, P. Poornima Vijayan, A. Karim, M. K. Hassan, Polymers 2017, 9, 33.
- 100A. Tamang, S. K. Ghosh, S. Garain, M. M. Alam, J. Haeberle, K. Henkel, D. Schmeisser, D. Mandal, ACS Appl. Mater. Interfaces 2015, 7, 16143.
- 101S. Roy, P. Thakur, N. A. Hoque, B. Bagchi, N. Sepay, F. Khatun, A. Kool, S. Das, ACS Appl. Mater. Interfaces 2017, 9, 24198.
- 102R. Li, C. Xiong, D. Kuang, L. Dong, Y. Lei, J. Yao, M. Jiang, L. Li, Macromol. Rapid Commun. 2008, 29, 1449.
- 103R. R. Abbas, N. N. Rammo, E. A. Al-Ajaj, J. Kerbala Univ. 2008, 6, 201.
- 104W. Dong, H. Wang, F. Ren, J. Zhang, M. He, T. Wu, Y. Li, ACS Sustainable Chem. Eng. 2016, 4, 4480.
- 105N. Jia, Q. He, J. Sun, G. Xia, R. Song, Polym. Test. 2017, 57, 302.
- 106N. Meng, X. Zhu, R. Mao, M. J. Reece, E. Bilotti, J. Mater. Chem. C 2017, 5, 3296.
- 107Y. Chen, L. M. Geever, J. A. Killion, J. G. Lyons, C. L. Higginbotham, D. M. Devine, Polym.-Plast. Technol. Eng. 2016, 55, 1057.
- 108C. Zhao, J. Zhang, Z. L. Wang, K. Ren, Adv. Sustainable Syst. 2017, 1, 1700068.
- 109J. Morvan, E. Buyuktanir, J. L. West, A. Jákli, Appl. Phys. Lett. 2012, 100, 063901.
- 110M. Varga, J. Morvan, N. Diorio, E. Buyuktanir, J. Harden, J. L. West, A. Jákli, Appl. Phys. Lett. 2013, 102, 153903.
- 111M. Ando, S. Takeshima, Y. Ishiura, K. Ando, O. Onishi, Jpn. J. Appl. Phys. 2017, 56, 035101.
- 112J. Placner, The Converse Piezoelectric Effect in Wood and Cellulose Materials, https://zidapps.boku.ac.at/abstracts/download.php?dataset_id=7546&property_id=107 (accessed: May 2018).
- 113A. Khan, Z. Abas, H. S. Kim, J. Kim, IEEE Sens. J. 2016, 16, C1.
10.1109/JSEN.2016.2616227 Google Scholar
- 114J. Kim, Y. B. Seo, Smart Mater. Struct. 2002, 11, 355.
- 115Z. Abas, H. S. Kim, J. Kim, J.-H. Kim, Front. Mater. 2014, 1, 1.
10.3389/fmats.2014.00017 Google Scholar
- 116L. J. Zhao, C. P. Tang, P. Gong, Int. J. Autom. Comput. 2010, 7, 324.
10.1007/s11633-010-0510-z Google Scholar
- 117H. S. Kim, S. Yun, J.-H. Kim, G. Y. Yun, J. Kim, Behav. Mech. Multifunct. Compos. Mater. 2008, 6929, 69290O.
- 118S. K. Mahadeva, K. Walus, B. Stoeber, ACS Appl. Mater. Interfaces 2014, 6, 7547.
- 119A. Hänninen, S. Rajala, T. Salpavaara, M. Kellomäki, S. Tuukkanen, Proc. Eng. 2016, 168, 1176.
- 120J. H. Kim, H. U. Ko, Zinc Oxide-Cellulose Nanocomposite and Preparation Thereof. US Patent 9 698 336, 2012.
- 121H. Kawai, Jpn. J. Appl. Phys. 1969, 8, 975.
- 122I. Babu, D. A. Van Den Ende, J. Phys. D: Appl. Phys. 2010, 43, 425402.
- 123C. David, J. F. Capsal, L. Laffont, E. Dantras, C. Lacabanne, J. Phys. D: Appl. Phys. 2012, 45, 415305.
- 124D. Carponcin, E. Dantras, J. Dandurand, G. Aridon, F. Levallois, L. Cadiergues, C. Lacabanne, Adv. Eng. Mater. 2014, 16, 1018.
- 125P. K. M. Leveque, C. Douchain, M. Rguiti, K. Prashantha, C. Courtois, M.-F. Lacrampe, Int. J. Polym. Anal. Charact. 2017, 22, 72.
- 126Z. Hua, X. Shi, Y. Chen, Polymer Composites 2017, 106, https://doi.org/10.1002/pc.24566.
- 127F. Zhang, X. Jiang, X. Zhu, Z. Chen, X. Z. Kong, Chem. Eng. J. 2016, 303, 48.
- 128E. Fukada, presented at the 12th Int. Symp. on Electrets, 2005. ISE-12, Salvador, Brazil, September 2005, 106.
- 129E. Fukada, Key Eng. Mater. 1994, 92–93, 143.
- 130T. Hattori, Y. Takahashi, M. Iijima, E. Fukada, J. Appl. Phys. 1996, 79, 1713.
- 131D. KoyamaK. Nakamura, Appl. Acoust. 2010, 71, 439.
- 132E. Fukada, M. Date, T. Ochiai, presented at the 10th IEEE Int. Symp. on Electrets, Greece 1999, ISE 10, 655.
- 133W. K. Sakamoto, S. Shibatta-Kagesawa, D. H. F. Kanda, S. H. Fernandes, E. Longo, G. O. Chierice, Phys. Status Solidi A. 1999, 172, 265.
- 134W. K. Sakamoto, E. De Souza, D. K. Das-Gupta, Mater. Res. 2001, 4, 201.
- 135W. Katsumi Sakamoto, R. Tokio Higuti, E. Brazoloto Crivelini, H. Naoyuki Nagashima, presented at the 2013 IEEE Int. Symp. on Applications of Ferroelectric and Workshop on the Piezoresponse Force Microscopy (ISAF/PFM), Prague, Czech Republic, July 2013, 295.
- 136M. J. Moody, C. W. Marvin, G. R. Hutchison, J. Mater. Chem. C 2016, 4, 4387.
- 137N. Wu, X. Cheng, Q. Zhong, J. Zhong, W. Li, B. Wang, B. Hu, J. Zhou, Adv. Funct. Mater. 2015, 25, 4788.
- 138H. Khanbareh, S. Van Der Zwaag, W. A. Groen, Smart Mater. Struct. 2015, 24, 045020.
- 139S. Miyata, M. Yoshikawa, S. Tasaka, M. Ko, Polym. J. 1980, 12, 857.
- 140H. UedaS. H. Carr, Polym. J. 1984, 16, 661.
- 141Z. Ounaies, C. Park, J. S. Harrison, J. G. Smith, J. A. Hinkley, Smart Struct. Mater. 1999: Electroact. Polym. Actuators Devices 1999, 3669, 171.
- 142B. Gonzalo, T. Breczewski, J. L. Vilas, M. A. Perez-Jubindo, M. R. De La Fuente, J. R. Dios, L. M. León, Ferroelectrics 2008, 370, 3.
- 143G. Zhao, X. Zhang, X. Cui, S. Wang, Z. Liu, L. Deng, A. Qi, X. Qiao, L. Li, C. Pan, Y. Zhang, L. Li, ACS Appl. Mater. Interfaces 2018, 10, 15855.
- 144C. Baur, D. J. Apo, D. Maurya, S. Priya, W. Voit, ACS Symp. Ser. 2014, 1161, 1.
- 145R. Kornbluh, R. Pelrine, J. Eckerle, J. Joseph, in 1998 IEEE Int. Conf. on Robotics and Automation, Vol. 3, IEEE, Piscataway, NJ 1998, pp. 2147–2154.
- 146P. M.Galletti, D. Rossi, A. S DeReggi, J. Clin. Eng. 1989, 14, 84.
- 147C. H. Sun, G. Q. Shang, Y. Y. Tao, Z. R. Li, Adv. Mater. Res. 2012, 516–517, 1481.
10.4028/www.scientific.net/AMR.516-517.1481 Google Scholar
- 148T. H. Kim, M.Sc. Thesis, University of California at Berkeley 2015.
- 149H. Li, Z. D. Deng, T. J. Carlson, Z. D. Deng, T. J. Carlson, Sens. Lett. 2012, 10, 679.
- 150I. E. Res, R. Kour, A. Charif, Innov. Energy Res. 2016, 5, 1.
- 151J. Kymissis, C. Kendall, J. Paradiso, presented at the Second IEEE International Symposium on Wearable Computers, Digest of Papers, USA, October 1998, 132.
- 152A. H. Abdul Razak, A. Zayegh, R. K. Begg, Y. Wahab, Sensors 2012, 12, 9884.
- 153Z. Lou, S. Chen, L. Wang, K. Jiang, G. Shen, Nano Energy 2016, 23, 7.
- 154K. Y. Shin, J. S. Lee, J. Jang, Nano Energy 2016, 22, 95.
- 155F. CarpiD. De Rossi, IEEE Trans. Inf. Technol. Biomed. 2005, 9, 295.
- 156A. Gupta, M. Imran, R. Agarwal, R. Yadav, P. Jangir, R. Poonia, Int. J. Eng. Manage. Res. 2016, 6, 36.
- 157S. Bhalla, S. Moharana, V. Talakokula, N. Kaur, Piezoelectric Materials: Applications in SHM, Energy Harvesting, and Biomechanics, John Wiley & Sons, USA 2016.
10.1002/9781119265139 Google Scholar
- 158V. Sharma, M. P. Singh, AKGEC International Journal of Technology, 7, 16.