Hypoxia-Activated Fluorescent Probe Based on Self-Immolative Block Copolymer
Kuanchun Shao
Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084 China
Search for more papers by this authorWenlong Zhang
Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084 China
Search for more papers by this authorJiajia Shen
Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Yaning He
Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084 China
E-mail: [email protected]
Search for more papers by this authorKuanchun Shao
Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084 China
Search for more papers by this authorWenlong Zhang
Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084 China
Search for more papers by this authorJiajia Shen
Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Yaning He
Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084 China
E-mail: [email protected]
Search for more papers by this authorAbstract
This work reports a hypoxia-activated fluorescent probe for tumor imaging by using self-immolative block copolymer with azobenzene linkage. The water-soluble polymer composed of self-immolative building blocks shows no obvious fluorescence. Under the hypoxic microenvironment of tumor cells, the azobenzene is reduced by the overexpressed azoreductase, which will trigger a domino-like disassembly of the self-immolative polymer. The released building blocks from the self-immolative polymer emit strong fluorescence, which shows the potential application in tumor imaging.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
mabi202100417-sup-0001-SuppMat.pdf1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Talekar, S. R. Boreddy, A. Singh, M. Amiji, Expert Opin. Biol. Ther. 2014, 14, 1145.
- 2M. Hockel, P. Vaupel, JNCI, J. Natl. Cancer Inst. 2001, 93, 266.
- 3J.-V. Gaustad, T. G. Simonsen, L. M. K. Andersen, E. K. Rofstad, J. Transl. Med. 2017, 15, 241.
- 4T. Thambi, J. H. Park, D. S. Lee, Chem. Commun. 2016, 52, 8492.
- 5D. Hanahan, R. A. Weinberg, Cell 2000, 100, 57.
- 6D. Hanahan, R. A. Weinberg, Cell 2011, 144, 646.
- 7A. R. Kirtane, S. M. Kalscheuer, J. Panyam, Adv. Drug Delivery Rev. 2013, 65, 1731.
- 8G. K. Balendiran, R. Dabur, D. Fraser, Cell Biochem. Funct. 2004, 22, 343.
- 9J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.
- 10M. Gao, F. Yu, C. Lv, J. Choo, L. Chen, Chem. Soc. Rev. 2017, 46, 2237.
- 11Q. Cai, T. Yu, W. Zhu, Y. Xu, X. Qian, Chem. Commun. 2015, 51, 14739.
- 12T. Xue, K. Shao, J. Xiang, X. Pan, Z. Zhu, Y. He, Nanoscale 2020, 12, 7509.
- 13L. Cui, Y. Shi, S. Zhang, L. Yan, H. Zhang, Z. Tian, Y. Gu, T. Guo, J. Huang, Dyes Pigm. 2017, 139, 587.
- 14S. U. Hettiarachchi, B. Prasai, R. L. Mccarley, J. Am. Chem. Soc. 2014, 136, 7575.
- 15T. Xue, X. Jia, J. Wang, J. Xiang, W. Wang, J. Du, Y. He, Chemistry 2019, 25, 9634.
- 16S. S. Liew, S. Du, J. Ge, S. Pan, S.-Y. Jang, J.-S. Lee, S. Q. Yao, Chem. Commun. 2017, 53, 13332.
- 17S. Li, X. Jiang, R. Zheng, S. Zuo, L. Zhao, G. Fan, J. Fan, Y. Liao, X. Yu, H. Cheng, Chem. Commun. 2018, 54, 7983.
- 18Z. Li, M. Wu, H. Bai, X. Liu, G. Tang, Chem. Commun. 2018, 54, 13127.
- 19K. Kiyose, K. Hanaoka, D. Oushiki, T. Nakamura, M. Kajimura, M. Suematsu, H. Nishimatsu, T. Yamane, T. Terai, Y. Hirata, T. Nagano, J. Am. Chem. Soc. 2010, 132, 15846.
- 20G. Yang, S. Z. F. Phua, W. Q. Lim, R. Zhang, L. Feng, G. Liu, H. Wu, A. K. Bindra, D. Jana, Z. Liu, Y. Zhao, Adv. Mater. 2019, 31, 1901513.
- 21J. Shen, K. Shao, W. Zhang, Y. He, ACS Macro Lett. 2021, 10, 702.
- 22Y. Li, Y. Sun, J. Li, Q. Su, W. Yuan, Y. Dai, C. Han, Q. Wang, W. Feng, F. Li, J. Am. Chem. Soc. 2015, 137, 6407.
- 23C. Munkholm, D. R. Parkinson, D. R. Walt, J. Am. Chem. Soc. 1990, 112, 2608.
- 24B. Huang, W. Chen, Y.-Q. Kuang, W. Liu, X.-J. Liu, L.-J. Tang, J.-H. Jiang, Org. Biomol. Chem. 2017, 15, 4383.
- 25T. Xue, J. Shen, K. Shao, W. Wang, B. Wu, Y. He, Chemistry 2020, 26, 2521.
- 26P. Verwilst, J. Han, J. Lee, S. Mun, H.-G. Kang, J. S. Kim, Biomaterials 2017, 115, 104.
- 27W. Piao, S. Tsuda, Y. Tanaka, S. Maeda, F. Liu, S. Takahashi, Y. Kushida, T. Komatsu, T. Ueno, T. Terai, T. Nakazawa, M. Uchiyama, K. Morokuma, T. Nagano, K. Hanaoka, Angew. Chem., Int. Ed. 2013, 52, 13028.
- 28S. Li, J. Wang, J. Shen, B. Wu, Y. He, ACS Macro Lett. 2018, 7, 437.
- 29K. E. Sapsford, L. Berti, I. L. Medintz, Angew. Chem., Int. Ed. 2006, 45, 4562.
- 30M. L. Szalai, R. M. Kevwitch, D. V. Mcgrath, J. Am. Chem. Soc. 2003, 125, 15688.
- 31F. M. H. De Groot, C. Albrecht, R. Koekkoek, P. H. Beusker, H. W. Scheeren, Angew. Chem., Int. Ed. 2003, 42, 4490.
- 32R. J. Amir, N. Pessah, M. Shamis, D. Shabat, Angew. Chem., Int. Ed. 2003, 42, 4494.
- 33X. Wang, J. Hu, G. Zhang, S. Liu, J. Am. Chem. Soc. 2014, 136, 9890.
- 34J. Yan, S. Lee, A. Zhang, J. Yoon, Chem. Soc. Rev. 2018, 47, 6900.
- 35A. Sagi, R. Weinstain, N. Karton, D. Shabat, J. Am. Chem. Soc. 2008, 130, 5434.
- 36A. P. Esser-Kahn, N. R. Sottos, S. R. White, J. S. Moore, J. Am. Chem. Soc. 2010, 132, 10266.
- 37P. Tan, H. Cai, Q. Wei, X. Tang, Q. Zhang, M. Kopytynski, J. Yang, Y. Yi, H. Zhang, Q. Gong, Z. Gu, R. Chen, K. Luo, Biomaterials 2021, 277, 121061.
- 38J. Rao, A. Khan, Polym. Chem. 2015, 6, 686.
- 39C. R. Thoma, M. Zimmermann, I. Agarkova, J. M. Kelm, W. Krek, Adv. Drug Delivery Rev. 2014, 69–70, 29.
- 40S. Däster, N. Amatruda, D. Calabrese, R. Ivanek, E. Turrini, R. A. Droeser, P. Zajac, C. Fimognari, G. C. Spagnoli, G. Iezzi, V. Mele, M. G. Muraro, Oncotarget 2017, 8, 1725.
- 41K. Klimkiewicz, K. Weglarczyk, G. Collet, M. Paprocka, A. Guichard, M. Sarna, A. Jozkowicz, J. Dulak, T. Sarna, C. Grillon, C. Kieda, Cancer Lett. 2017, 396, 10.
- 42J. Wang, B. Wu, S. Li, Y. He, J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2450.
- 43C. Fischbach, R. Chen, T. Matsumoto, T. Schmelzle, J. S. Brugge, P. J. Polverini, D. J. Mooney, Nat. Methods 2007, 4, 855.