Unraveling the Role of Crystallization Dynamics on Luminescence Characteristics of Perovskite Light-Emitting Diodes
Kong-Chao Shen
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Search for more papers by this authorJing-Kun Wang
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Search for more papers by this authorYang Shen
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Yan-Qing Li
School of Physics and Electronic Science, Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center, East China Normal University, Shanghai, 200062 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorMing-Lei Guo
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Search for more papers by this authorZhen-Huang Su
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorLin-Yang Lu
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Search for more papers by this authorXiao-Yi Cai
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Search for more papers by this authorLi Chen
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorFei Song
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorXing-Yu Gao
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorCorresponding Author
Jian-Xin Tang
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa, Macau SAR, 999078 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Nobuo Ueno
Graduate School of Advanced Integration Science, Chiba University, Chiba, 263-8522 Japan
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorKong-Chao Shen
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Search for more papers by this authorJing-Kun Wang
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Search for more papers by this authorYang Shen
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Yan-Qing Li
School of Physics and Electronic Science, Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center, East China Normal University, Shanghai, 200062 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorMing-Lei Guo
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Search for more papers by this authorZhen-Huang Su
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorLin-Yang Lu
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Search for more papers by this authorXiao-Yi Cai
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Search for more papers by this authorLi Chen
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorFei Song
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorXing-Yu Gao
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorCorresponding Author
Jian-Xin Tang
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123 China
Macao Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa, Macau SAR, 999078 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Nobuo Ueno
Graduate School of Advanced Integration Science, Chiba University, Chiba, 263-8522 Japan
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Metal halide perovskites are one of the most promising materials for optoelectronic applications owing to their unique optoelectronic properties. In the pursuit of achieving the efficient perovskite light-emitting diodes (PeLEDs), the critical role of crystallization dynamics on luminescence properties of cesium lead bromide (CsPbBr3) perovskite films has been clarified based on the characterizations of in situ photoelectron spectroscopy, synchrotron-based grazing incidence X-ray diffraction, and device fabrication. The crystallinity and crystal orientation of CsPbBr3 perovskite films has been effectively controlled when tuning the underlayer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) with the ethanolamine modification. The fast crystallization with the formation of pure cubic phase (α-CsPbBr3) reveals a substantial boost in luminance and device efficiency of PeLEDs, whereas the performance degradation occurs due to the phase transition from α-CsPbBr3 to orthogonal phase (γ-CsPbBr3) along with the appearance of PbBr2. The decomposition of organic additives in the perovskite films is a key factor that results in this phase transition, which changes the absorption and band gap as confirmed by the density functional theory calculation. These experimental and theoretical findings provide a better understanding of the crystallization dynamics of perovskite emitters and their influence on device performance by tuning the substrate properties.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
lpor202100023-sup-0001-SuppMat.pdf1.4 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei, H. Chen, Y. Miao, W. Zou, K. Pan, Y. He, H. Cao, Y. Ke, M. Xu, Y. Wang, M. Yang, K. Du, Z. Fu, D. Kong, D. Dai, Y. Jin, G. Li, H. Li, Q. Peng, J. Wang, W. Huang, Nature 2018, 562, 249.
- 2K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, Z. Wei, Nature 2018, 562, 245.
- 3B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J. M. Richter, L. Yang, L. Dai, M. Alsari, X.-J. She, L. Liang, J. Zhang, S. Lilliu, P. Gao, H. J. Snaith, J. Wang, N. C. Greenham, R. H. Friend, D. Di, Nat. Photonics 2018, 12, 783.
- 4W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao, Z. Yuan, T. Borzda, A. J. Barker, E. Tyukalova, Z. Hu, M. Kawecki, H. Wang, Z. Yan, X. Liu, X. Shi, K. Uvdal, M. Fahlman, W. Zhang, M. Duchamp, J.-M. Liu, A. Petrozza, J. Wang, L.-M. Liu, W. Huang, F. Gao, Nat. Photonics 2019, 13, 418.
- 5Z. Yuan, Y. Miao, Z. Hu, W. Xu, C. Kuang, K. Pan, P. Liu, J. Lai, B. Sun, J. Wang, S. Bai, F. Gao, Nat. Commun. 2019, 10, 2818.
- 6Y. Shen, L. P. Cheng, Y. Q. Li, W. Li, J. D. Chen, S. T. Lee, J. X. Tang, Adv. Mater. 2019, 31, 1901517.
- 7L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.
- 8Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nat. Nanotechnol. 2014, 9, 687.
- 9S. D. Stranks, H. J. Snaith, Nat. Nanotechnol. 2015, 10, 391.
- 10M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, E. H. Sargent, Nat. Nanotechnol. 2016, 11, 872.
- 11N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang, W. Huang, Nat. Photonics 2016, 10, 699.
- 12S. Kumar, J. Jagielski, N. Kallikounis, Y.-H. Kim, C. Wolf, F. Jenny, T. Tian, C. J. Hofer, Y.-C. Chiu, W. J. Stark, T. W. Lee, C. J. Shih, Nano Lett. 2017, 17, 5277.
- 13T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y. J. Pu, S. Ohisa, J. Kido, Nat. Photonics 2018, 12, 681.
- 14X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, J. You, Nat. Commun. 2018, 9, 570.
- 15S. G. R. Bade, J. Li, X. Shan, Y. Ling, Y. Tian, T. Dilbeck, T. Besara, T. Geske, H. Gao, B. Ma, K. Hanson, T. Siegrist, C. Xu, Z. Yu, ACS Nano 2016, 10, 1795.
- 16S. G. R. Bade, X. Shan, P. T. Hoang, J. Li, T. Geske, L. Cai, Q. Pei, C. Wang, Z. Yu, Adv. Mater. 2017, 29, 1607053.
- 17H. K. Seo, H. Kim, J. Lee, M. H. Park, S.-H. Jeong, Y. H. Kim, S. J. Kwon, T. H. Han, S. Yoo, T. W. Lee, Adv. Mater. 2017, 29, 1605587.
- 18G. Li, Z.-K. Tan, D. Di, M. L. Lai, L. Jiang, J. H.-W. Lim, R. H. Friend, N. C. Greenham, Nano Lett. 2015, 15, 2640.
- 19S. D. Stranks, A. Petrozza, Nat. Photonics 2016, 10, 562.
- 20K. P. Goetz, A. D. Taylor, F. Paulus, Y. Vaynzof, Adv. Funct. Mater. 2020, 30, 1910004.
- 21S. D. Stranks, R. L. Z. Hoye, D. Di, R. H. Friend, F. Deschler, Adv. Mater. 2019, 31, 1803336.
- 22H. J. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Lett. 2013, 13, 1764.
- 23Z. Wei, J. Xing, J. Phys. Chem. Lett. 2019, 10, 3035.
- 24M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 2016, 9, 1989.
- 25S. J. Zelewski, J. M. Urban, A. Surrente, D. K. Maude, A. Kuc, L. Schade, R. D. Johnson, M. Dollmann, P. K. Nayak, H. J. Snaith, P. Radaelli, R. Kudrawiec, R. J. Nicholas, P. Plochocka, M. Baranowski, J. Mater. Chem. C 2019, 7, 8350.
- 26G. Nan, X. Zhang, M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. D. Stranks, G. Lu, D. Beljonne, Adv. Energy Mater. 2018, 8, 1702754.
- 27E. M. Tennyson, T. A. S. Doherty, S. D. Stranks, Nat. Rev. Mater. 2019, 4, 573.
- 28Q. Sun, P. Fassl, Y. Vaynzof, ACS Appl. Energy Mater. 2018, 1, 2410.
- 29D. W. de. Quilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith, D. S. Ginger, Science 2015, 348, 683.
- 30G. El-Hajje, C. Momblona, L. Gil-Escrig, J. Ávila, T. Guillemot, J.-F. Guillemoles, M. Sessolo, H. J. Bolink, L. Lombez, Energy Environ. Sci. 2016, 9, 2286.
- 31C. G. Bischak, E. M. Sanehira, J. T. Precht, J. M. Luther, N. S. Ginsberg, Nano Lett. 2015, 15, 4799.
- 32D. Moerman, G. E. Eperon, J. T. Precht, D. S. Ginger, Chem. Mater. 2017, 29, 5484.
- 33L. Kuai, J. Li, Y. Li, Y. Wang, P. Li, Y. Qin, T. Song, Y. Yang, Z. Chen, X. Gao, B. Sun, ACS Energy Lett. 2020, 5, 8.
- 34M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen, J. Phys. Chem. Lett. 2016, 7, 167.
- 35C. J. Yu, Y. H. Kye, U. G. Jong, K. C. Ri, S. H. Choe, J. S. Kim, S. G. Ko, G. I. I. Ryu, B. Kim, ACS Appl. Mater. Interfaces 2020, 12, 1858.
- 36Y. Shen, M. N. Li, Q. Y. Li, F. M. Xie, H. Y. Wu, G. H. Zhan, L.i. Chen, S. T. Lee, J. X. Tang, ACS Nano 2020, 14, 6107.
- 37Y. Wang, M. Li, H. Li, Y. Lan, X. Zhou, C. Li, X. Hu, Y. Song, Adv. Energy Mater. 2019, 9, 1900838.
- 38Y. Xie, D. Yu, J. Kong, X. Fan, W. Qiao, J. Appl. Polym. Sci. 2006, 100, 4004.
- 39A. Dobrovolsky, A. Merdasa, E. L. Unger, A. Yartsev, I. Scheblykin, Nat. Commun. 2017, 8, 34.
- 40J. Yin, H. Yang, K. Song, A. M. El-Zohry, Y. Han, O. M. Bakr, J.-L. Brédas, O. F. Mohammed, J. Phys. Chem. Lett. 2018, 9, 5490.
- 41G. Murtaza, I. Ahmad, Phys. B 2011, 406, 3222.
- 42C. Li, Q. Guo, H. Zhang, Y. Bai, F. Wang, L. Liu, T. Hayatb, A. Alsaedib, Z. Tan, Nano Energy 2017, 40, 248.
- 43J. H. Warby, B. Wenger, A. J. Ramadan, R. D. J. Oliver, H. J. Snaith, ACS Nano 2020, 14, 8855.
- 44L. Zhao, K. M. Lee, K. Roh, S. U. Z. Khan, B. P. Rand, Adv. Mater. 2019, 31, 1805836.
- 45M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe, J. M. Richter, M. Alsari, E. P. Booker, E. M. Hutter, A. J. Pearson, S. Lilliu, T. J. Savenije, H. Rensmo, G. Divitini, C. Ducati, R. H. Friend, S. D. Stranks, Nature 2018, 555, 497.
- 46R. Brenes, D. Guo, A. Osherov, N. K. Noel, C. Eames, E. M. Hutter, S. K. Pathak, F. Niroui, R. H. Friend, M. S. Islam, H. J. Snaith, V. Bulović, T. J. Savenije, S. D. Stranks, Joule 2017, 1, 155.
- 47M. Li, W. Jang, D. H. Wang, ACS Sustainable Chem. Eng. 2019, 7, 8245.
- 48Z. K. Liu, Y. Bekenstein, X. C. Ye, S. C. Nguyen, J. Swabeck, D. D. Zhang, S. T. Lee, P. D. Yang, W. L. Ma, A. P. Alivisatos, J. Am. Chem. Soc. 2017, 139, 5309.
- 49X. Z. Lao, W. Zhou, Y. Bao, X. Wang, Z. Yang, M. Wang, S. Xu, Nanoscale 2020, 12, 7315.
- 50P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 51J. J. Mortensen, L. B. Hansen, K. W. Jacobsen, Phys. Rev. B 2005, 71, 035109.
- 52J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, J. Phys.: Condens. Matter 2010, 22, 253202.
- 53P. Cottingham, R. L. Brutchey, Chem. Commun. 2016, 52, 5246.
- 54J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 2008, 100, 136406.
- 55O. Gritsenko, R. van Leeuwen, E. van Lenthe, E. J. Baerends, Phys. Rev. A: At., Mol., Opt. Phys. 1995, 51, 1944.
- 56M. Kuisma, J. Ojanen, J. Enkovaara, T. T. Rantala, Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 115106.
10.1103/PhysRevB.82.115106 Google Scholar
- 57J. Yan, J. J. Mortensen, K. W. Jacobsen, K. S. Thygesen, Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 83, 245122.
10.1103/PhysRevB.83.245122 Google Scholar
- 58I. E. Castelli, K. S. Thygesen, K. W. Jacobsen, J. Mater. Chem. A 2015, 3, 12343.