Editorial
Editorial for “Diagnosis of Sacroiliitis Through Semi-Supervised Segmentation and Radiomics Feature Analysis of MRI Images”
First published: 12 February 2025
No abstract is available for this article.
References
- 1Liu L, Zhong R, Zhang Y, et al. Diagnosis of sacroiliitis through semi-supervised segmentation and radiomics feature analysis of MRI images. J Magn Reson Imaging 2025; 62: 563-572. https://doi.org/10.1002/jmri.29731.
- 2Moon WJ, Lee S, Hwang J, Lee J, Kang S, Cha H-S. Performances of machine learning algorithms in discriminating sacroiliitis features on MRI: A systematic review. RMD Open 2024; 10:e003783.
- 3Bray TJP, Jones A, Bennett AN, et al. Recommendations for acquisition and interpretation of MRI in axial spondyloarthritis: Joint effort of ASAS/OMERACT. Ann Rheum Dis 2024; 83: 45-55.
- 4Montin E, Deniz CM, Kijowski R, Youm T, Lattanzi R. The impact of data augmentation and transfer learning on the performance of deep learning models for the segmentation of the hip on 3D magnetic resonance images. Inform Med Unlocked 2024; 45:101444.
- 5Montin E, Corino VDA, Martel D, Carlucci G, Scaramuzza D. Editorial: Radiomics and AI for clinical and translational medicine. Front Radiol 2024; 4:1375443.
- 6Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012; 48(4): 441-446.
- 7Faleiros MC, Nogueira-Barbosa MH, Dalto VF, et al. Machine learning techniques for computer-aided classification of active inflammatory sacroiliitis in magnetic resonance imaging. Adv Rheumatol 2020; 60: 25.
- 8Liu L, Zhang H, Zhang W, Mei W, Huang R. Sacroiliitis diagnosis based on interpretable features and multi-task learning. Phys Med Biol 2024; 69:045034.
- 9Recht MP, White LM, Fritz J, Resnick DL. Advances in musculoskeletal imaging: Recent developments and predictions for the future. Radiology 2023; 308(2):e230615. https://doi.org/10.1148/radiol.230615.