Topology-Induced Modifications in the Critical Behavior of the Yaldram–Khan Catalytic Reaction Model
Paulo F. Gomes
Grupo de Redes Complexas Aplicadas de Jataí, Universidade Federal de Jataí, Jataí, Brazil
Faculdade de Ciências e Tecnologia, Universidade Federal de Goiás, Estrada Municipal, Bairro Fazenda Santo Antônio, Aparecida de Goiânia, Brazil
Search for more papers by this authorHenrique A. Fernandes
Grupo de Redes Complexas Aplicadas de Jataí, Universidade Federal de Jataí, Jataí, Brazil
Search for more papers by this authorCorresponding Author
Roberto da Silva
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Correspondence:
Roberto da Silva ([email protected])
Search for more papers by this authorPaulo F. Gomes
Grupo de Redes Complexas Aplicadas de Jataí, Universidade Federal de Jataí, Jataí, Brazil
Faculdade de Ciências e Tecnologia, Universidade Federal de Goiás, Estrada Municipal, Bairro Fazenda Santo Antônio, Aparecida de Goiânia, Brazil
Search for more papers by this authorHenrique A. Fernandes
Grupo de Redes Complexas Aplicadas de Jataí, Universidade Federal de Jataí, Jataí, Brazil
Search for more papers by this authorCorresponding Author
Roberto da Silva
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Correspondence:
Roberto da Silva ([email protected])
Search for more papers by this authorABSTRACT
In this work, we investigated how the use of complex networks as catalytic surfaces can affect the phase diagram of the Yaldram–Khan model, as well as how the order of the phase transitions present in the seminal work behaves when randomness is added to the model. The study was conducted by taking into consideration two well-known random networks, the Erdős-Rényi network (ERN), with its long-range randomness, and the random geometric graph (RGG), with its spatially constrained randomness. We perform extensive steady-state Monte Carlo simulations for , the NO dissociation rate, and show the behavior of the reactive window as a function of the average degree of the networks. Our results also show that, different from the ERN, which preserves the nature of the phase transitions of the original model for all considered average degrees, the RGG seems to have two second-order phase transitions for small values of average degree.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1J. K. Nørskov, F. Abild-Pedersen, F. Studt, and T. Bligaard, “Density Functional Theory in Surface Chemistry and Catalysis,” Proceedings of the National Academy of Sciences of the USA 108 (2011): 937–943.
- 2B. Hammer and J. K. Nørskov, “Theoretical Surface Science and Catalysis—Calculations and Concepts,” Advances in Catalysis 45 (2000): 71–129.
- 3J. W. Niemantsverdriet, Spectroscopy in Catalysis: An Introduction (Wiley-VCH, 2007).
10.1002/9783527611348 Google Scholar
- 4H. Hinrichsen, “Non-Equilibrium Critical Phenomena and Phase Transitions Into Absorbing States,” Advances in Physics 49 (2000): 815–958.
- 5M. Henkel and M. Pleimling, “ Ageing and Dynamical Scaling Far From Equilibrium,” in Non-Equilibrium Phase Transitions, vol. 2 (Springer, 2010).
10.1007/978-90-481-2869-3 Google Scholar
- 6T. Tome and M. J. de Oliveira, “Effect of Immunization Through Vaccination on the SIS Epidemic Spreading Model,” Journal of Physics A 55 (2022): 275602.
10.1088/1751-8121/ac7116 Google Scholar
- 7R. da Silva and H. A. Fernandes, “A Study of the Influence of the Mobility on the Phase Transitions of the Synchronous SIR Model,” Journal of Statistical Mechanics: Theory and Experiment 2015 (2015): P06011.
10.1088/1742-5468/2015/06/P06011 Google Scholar
- 8R. da Silva, M. J. de Oliveira, T. Tome, and J. R. Drugowich de Felício, “Analysis of Earlier Times and Flux of Entropy on the Majority Voter Model With Diffusion,” Physical Review E 101 (2020): 012130.
- 9R. M. Ziff, E. Gulari, and Y. Barshad, “Kinetic Phase Transitions in an Irreversible Surface-Reaction Model,” Physical Review Letters 56 (1986): 2553–2556.
- 10J. Marro and R. Dickman, Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, 1999).
10.1017/CBO9780511524288 Google Scholar
- 11G. M. Buendía, E. Machado, and P. A. Rikvold, “Effect of CO Desorption and Coadsorption With O on the Phase Diagram of a Ziff–Gulari–Barshad Model for the Catalytic Oxidation of CO,” Journal of Chemical Physics 131 (2009): 184704.
- 12G. M. Buendía and P. A. Rikvold, “Model for the Catalytic Oxidation of CO, Including Gas-Phase Impurities and CO Desorption,” Physical Review E 88 (2013): 012132.
- 13T. Tomé and R. Dickman, “Ziff-Gulari-Barshad Model With CO Desorption: An Ising-Like Nonequilibrium Critical Point,” Physical Review E 47 (1993): 948–952.
- 14R. da Silva and H. A. Fernandes, “Highly Detailed Computational Study of a Surface Reaction Model With Diffusion: Four Algorithms Analyzed via Time-Dependent and Steady-State Monte Carlo Simulations,” Computer Physics Communications 230 (2018): 1–9.
10.1016/j.cpc.2018.04.008 Google Scholar
- 15H. A. Fernandes, R. da Silva, E. D. Santos, P. F. Gomes, and E. Arashiro, “Alternative Method to Characterize Continuous and Discontinuous Phase Transitions in Surface Reaction Models,” Physical Review E 94 (2016): 022129.
- 16H. A. Fernandes, R. da Silva, and A. B. Bernardi, “Two Universality Classes of the Ziff-Gulari-Barshad Model With CO Desorption Via Time-Dependent Monte Carlo Simulations,” Physical Review E 98 (2018): 032113.
- 17H. A. Fernandes and R. da Silva, “Unveiling the Hidden Weak Universality of the Ziff-Gulari-Barshad Model,” Physical Review E 111 (2025): 044101.
- 18K. Yaldram and M. A. Khan, “NO-CO Reaction on Square and Hexagonal Surfaces: A Monte Carlo Simulation,” Journal of Catalysis 131 (1991): 369–377.
- 19K. M. Khan and W. Ahmad, “NO-CO Catalytic Reaction on a Square Lattice: The Effect of the Eley-Rideal Mechanism,” Journal of Physics A: Mathematical and General 35 (2002): 2713–2723.
- 20E. Loscar and E. V. Albano, “Critical Behaviour of Irreversible Reaction Systems,” Reports on Progress in Physics 66 (2003): 1343–1382.
- 21L. A. Avalos, V. Bustos, R. Uñac, F. Zaera, and G. Zgrablich, “Dynamic Monte Carlo Simulation of the NO + CO Reaction on Rh(111),” Journal of Physical Chemistry. B 110 (2006): 24964–24971.
- 22P. Hui-Yun and W. H. Jun, “A Two-Species Surface Reaction Model of the Mixing Type,” Physica A 227 (1996): 234–238.
10.1016/0378-4371(95)00398-3 Google Scholar
- 23A. G. Dickman, B. C. S. Grandi, W. Figueiredo, and R. Dickman, “Theory of theNO+COsurface-Reaction Model,” Physical Review E 59 (1999): 6361–6369.
- 24M. A. Khan, K. Yaldram, G. K. Khalil, and K. M. Khan, “NO-CO Surface Reaction on a Square Lattice,” Physical Review E 50 (1994): 2156–2160.
- 25T. Aida, D. Na-Ragong, R. Kobayashi, and H. Niiyama, “Effect of Diffusion and Adsorption–Desorption on Periodic Operation Performance of NO–CO Reaction Over Supported Noble Metal Catalysts,” Chemical Engineering Science 54 (1999): 4449.
- 26J. J. Luque, A. Gómez, and A. Córdoba, “CO+NO Surface Reaction Model by Monte Carlo Simulation,” Physica A 331 (2004): 505–516.
- 27C. D. Lorenz, R. Haghgooie, C. Kennebrew, and R. M. Ziff, “The Effects of Surface Defects in a Catalysis Model,” Surface Science 517 (2002): 75–86.
- 28W. Ahmad and M. K. Baloch, “The Effect of Inactive Impurities on a Surface in NO–CO Reaction: A Monte Carlo Simulation,” Applied Surface Science 253 (2007): 8447.
- 29B. Meng, H. Weinberg, and J. W. Evans, “Lattice-Gas Model Mimicking the NO+CO Reaction on Pt(100),” Journal of Chemical Physics 101 (1994): 3234–3242.
- 30J. J. Díaz and G. M. Buendía, “A Model for the Catalytic Reduction of NO With CO and N Desorption,” Physica A 491 (2018): 13–27.
- 31E. J. Hernández and G. M. Buendía, “Model for the Catalytic Reduction of NO on a Surface With Species Desorption and Impurities That Cannot Desorb,” International Journal of Modern Physics B 36 (2022): 2240002.
- 32E. B. Vilela, H. A. Fernandes, F. L. P. Costa, and P. F. Gomes, “Phase Diagrams of the Ziff–Gulari–Barshad Model on Random Networks,” Journal of Computational Chemistry 41 (2020): 1964.
- 33M. E. J. Newman, Networks: An Introduction (Oxford University Press, 2010), https://doi.org/10.1093/oso/9780198805090.001.0001.
10.1093/acprof:oso/9780199206650.001.0001 Google Scholar
- 34R. Albert and A.-L. Barabási, “Statistical Mechanics of Complex Networks,” Reviews of Modern Physics 74 (2002): 47–97.
- 35E. Gilbert, “Random Plane Networks,” Journal of the Society for Industrial and Applied Mathematics 9 (1961): 533–543, https://doi.org/10.1137/0109045.
- 36C. Seshadhri, T. G. Kolda, and A. Pinar, “Community Structure and Scale-Free Collections of Erdös-Rényi Graphs,” Physical Review E 85, no. 5 (2012): 056109, https://link.aps.org/doi/10.1103/PhysRevE.85.056109.
- 37T. W. Moore, P. D. Finley, B. J. Apelberg, et al., “An Opinion-Driven Behavioral Dynamics Model for Addictive Behaviors,” European Physical Journal B 88 (2015): 95, https://doi.org/10.1140/epjb/e2015-40462-y.
- 38M. Saeedian, M. Miguel, and R. Toral, “Absorbing Phase Transition in the Coupled Dynamics of Node and Link States in Random Networks,” Scientific Reports 9, no. 9726 (2019): 1–14, https://doi.org/10.1038/s41598-019-45937-y.
- 39M. E. J. Newman, D. J. Watts, and S. H. Strogatz, “Random Graph Models of Social Networks,” Proceedings of the National Academy of Sciences of the USA 99 (2002): 2566–2572, https://doi.org/10.1073/pnas.012582999.
- 40S. M. Reia, P. F. Gomes, and J. F. Fontanari, “ The European Physical Journal B,” 92 (2019): 205.
- 41S. M. Reia, P. F. Gomes, and J. F. Fontanari, “Comfort-Driven Mobility Produces Spatial Fragmentation in Axelrod's Model,” Journal of Statistical Mechanics 3 (2020): 033402.
10.1088/1742-5468/ab75e5 Google Scholar
- 42P. F. Gomes, H. A. Fernandes, and A. A. Costa, “Topological Transition in a Coupled Dynamics in Random Networks,” Physica A 597 (2022): 127269.
- 43F. F. Franco and P. F. Gomes, “New Coevolution Dynamic as an Optimization Strategy in Group Problem Solving,” European Physical Journal B 97 (2024): 190, https://doi.org/10.1140/epjb/s10051-024-00828-8.
- 44R. Solomonoff and A. Rapoport, “Connectivity of Random Networks,” Bulletin of Mathematical Biology 13 (1951): 107–117, https://doi.org/10.1016/S0092-8240(76)80054-7.
10.1016/S0092?8240(76)80054?7 Google Scholar
- 45P. Erdös and A. Rényi, “On Random Graphs,” Publicationes Mathematicae 6 (1959): 290–297.
10.5486/PMD.1959.6.3-4.12 Google Scholar
- 46A. L. Barabási, Network Science (Cambridge University Press, 2016), https://networksciencebook.com/.
- 47J. D. e. M. Christensen, “Random Geometric Graphs,” Physical Review E 66 (2002): 016121.
- 48P. F. Gomes, S. M. Reia, F. A. Rodrigues, and J. F. Fontanari, “Mobility Helps Problem-Solving Systems to Avoid Groupthink,” Physical Review E 99 (2019): 032301.
- 49B. J. Brosilow and R. M. Ziff, “Comment on “NO-CO Reaction on Square and Hexagonal Surfaces: A Monte Carlo Simulation,” Journal of Catalysis 136 (1992): 275.
- 50F. Bagnoli, N. Boccara, and R. Rechtman, “Nature of Phase Transitions in a Probabilistic Cellular Automaton With Two Absorbing States,” Physical Review E 63 (2001): 046116, https://doi.org/10.1103/PhysRevE.63.046116.
- 51F. Bagnoli, F. Franci, and R. Rechtman, “Phase Transitions of Extended-Range Probabilistic Cellular Automata With Two Absorbing States,” Physical Review E 71 (2005): 046108, https://doi.org/10.1103/PhysRevE.71.046108.