Advanced Computational Insights Into Cs₂NaScX₆ (X = Cl, Br) ₆ Double Perovskites: Structural Stability, Elastic Properties, and Optical Characteristics for Next-Generation Photovoltaics
Corresponding Author
Junaid Khan
Department of Physics, Kohat University of Science and Technology Kohat, Kohat, Pakistan
Correspondence:
Junaid Khan ([email protected])
Tanvi Sharma ([email protected])
Search for more papers by this authorMatiullah Khan
Department of Physics, Kohat University of Science and Technology Kohat, Kohat, Pakistan
Search for more papers by this authorCorresponding Author
Tanvi Sharma
Department of Physics, VMK Science College, Mumbai University, Mumbai, India
Correspondence:
Junaid Khan ([email protected])
Tanvi Sharma ([email protected])
Search for more papers by this authorImed Boukhris
Central Labs, King Khalid University, Abha, Saudi Arabia
Department of Physics, College of Science, King Khalid University, Abha, Saudi Arabia
Search for more papers by this authorM. S. Al-Buriahi
Department of Physics, Sakarya University, Sakarya, Turkey
Search for more papers by this authorCorresponding Author
Junaid Khan
Department of Physics, Kohat University of Science and Technology Kohat, Kohat, Pakistan
Correspondence:
Junaid Khan ([email protected])
Tanvi Sharma ([email protected])
Search for more papers by this authorMatiullah Khan
Department of Physics, Kohat University of Science and Technology Kohat, Kohat, Pakistan
Search for more papers by this authorCorresponding Author
Tanvi Sharma
Department of Physics, VMK Science College, Mumbai University, Mumbai, India
Correspondence:
Junaid Khan ([email protected])
Tanvi Sharma ([email protected])
Search for more papers by this authorImed Boukhris
Central Labs, King Khalid University, Abha, Saudi Arabia
Department of Physics, College of Science, King Khalid University, Abha, Saudi Arabia
Search for more papers by this authorM. S. Al-Buriahi
Department of Physics, Sakarya University, Sakarya, Turkey
Search for more papers by this authorABSTRACT
We investigate the comprehensive analysis's structural, electronic, optical, and elastic properties of Cs₂NaScX₆ (X = Cl, Br) double perovskites using density functional theory (DFT) implemented by the WIEN2k code. The results show that both compounds are in cubic phases. The calculated tolerance factors show both are stable compounds. The computed optimized lattice parameters are Cs₂NaScX₆ (X = Cl, Br) are 10.72 Å and 12.01 Å, respectively. Employing a modified Becke–Johnson (mBJ) potential electronic nature shows that both compounds are in semiconductor nature, that is, 3.138 eV and 3.977 eV. The calculated elastic constant and perimeters show the Cs₂NaScX₆ (X = Cl, Br) are mechanical stables and also ductile and anisotropic nature. The optical properties described the range of photon energies from 0 to 10 eV, revealing pronounced absorption within the visible spectrum, highlighting their considerable promise for transformative innovations in photovoltaic technology. These double perovskites exhibit superior absorption characteristics compared to their Cs₂NaScX₆ (X = Cl, Br) analogues, thus laying the groundwork for significant advancements in solar energy conversion and photovoltaic applications.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The raw/processed data can be made available with a reasonable request to the corresponding author.
References
- 1S. Vasala and M. Karppinen, “A2B′″O6 Perovskites: A Review,” Progress in Solid State Chemistry 43 (2015): 1–36.
- 2E. R. Dohner, A. Jaffe, L. R. Bradshaw, and H. I. Karunadasa, “Intrinsic White-Light Emission From Layered Hybrid Perovskites,” Journal of the American Chemical Society 136 (2014): 13154–13157.
- 3A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” Journal of the American Chemical Society 131 (2009): 6050–6051.
- 4A. Dixit, A. Saxena, R. Sharma, D. Behera, and S. Mukherjee, “ Solar Photovoltaic Principles,” in Solar PV Panels - Recent Advances and Future Prospects, ed. B. I. Ismail (Rijeka: IntechOpen, 2023), https://doi.org/10.5772/intechopen.109730.
10.5772/intechopen.109730 Google Scholar
- 5Z. Aboub, T. Seddik, B. Daoudi, et al., “Impact of La, Ni-Doping on Structural and Electronic Properties of SrTiO3 for Photocatalytic Water Splitting,” Inorganic Chemistry Communications 153 (2023): 110871.
- 6S. Wang, M. Huang, Y. Wu, and S. Chen, “Absolute Volume Deformation Potentials of Inorganic ABX3 Halide Perovskites: The Chemical Trends,” Advanced Theory and Simulations 4 (2021): 2100060.
- 7H. Jonathan, R. Rao, L. Giordano, Y. Katayama, Y. Yang, and S. Yang, “Perovskites in Catalysis and Electrocatalysis,” Science 358 (2017): 751–756.
- 8N. F. Atta, A. Galal, and E. H. El-Ads, “ Perovskite Nanomaterials–Synthesis, Characterization, and Applications,” in Perovskite Materials-Synthesis, Characterisation, Properties, and Applications (2016), 107–151.
10.5772/61280 Google Scholar
- 9W. Xiao, D. Tan, W. Zhou, et al., “A New Cubic Perovskite in PbGeO3 at High Pressures,” American Mineralogist 97 (2012): 1193–1198.
- 10M. Sk, “Recent Progress of Lead-Free Halide Double Perovskites for Green Energy and Other Applications,” Applied Physics A 128 (2022): 1–29.
10.1007/s00339-022-05596-9 Google Scholar
- 11N. Bouri, T. A. Geleta, K. W. Guji, D. Behera, and K. Nouneh, “Numerical Analysis of Photovoltaic Performance in NaSnCl3 and KSnCl3 Perovskite Absorber Layers for Solar Energy Harvesting: SCAPS-1D Study,” Materials Today Communications 40 (2024): 110014.
- 12T. A. Geleta, D. Behera, N. Bouri, V. J. R. Rivera, and F. M. Gonzalo, “First Principles Insight Into the Study of the Structural, Stability, and Optoelectronic Properties of Alkali-Based Single Halide Perovskite ZSnCl3 (Z= Na/K) Materials for Photovoltaic Applications,” Journal of Computational Chemistry 45 (2024): 2574–2586.
- 13D. Behera, D. R. Lawati, M. Agouri, et al., “A DFT Insight Into the Physical Features of Alkaline Based Perovskite Compounds AInBr3 (A= K, Rb),” Solid State Ionics 409 (2024): 116513.
- 14M. Manzoor, D. Behera, R. Sharma, A. J. A. Moayad, A. A. Al-Kahtani, and Y. A. Kumar, “Comprehensive First Principles to Investigate Optoelectronic and Transport Phenomenon of Lead-Free Double Perovskites Ba2AsBO6 (B Nb, ta) Compounds,” Heliyon 10 (2024): 30109.
10.1016/j.heliyon.2024.e30109 Google Scholar
- 15D. Behera, T. A. Geleta, I. Allaoui, et al., “First-Principle Analysis of Optical and Thermoelectric Properties in Alkaline-Based Perovskite Compounds AInCl3 (A= K, Rb),” European Physical Journal Plus 139 (2024): 127.
- 16E. Danladi, P. M. Gyuk, N. N. Tasie, et al., “Impact of Hole Transport Material on Perovskite Solar Cells With Different Metal Electrode: A SCAPS-1D Simulation Insight,” Heliyon 9 (2023): 16838.
- 17M. Roknuzzaman, C. Zhang, K. Ostrikov, et al., “Electronic and Optical Properties of Lead-Free Hybrid Double Perovskites for Photovoltaic and Optoelectronic Applications,” Scientific Reports 9 (2019): 718.
- 18P. R. Varadwaj, “A2AgCrCl6 (A=Li, Na, K, Rb, Cs) Halide Double Perovskites: A Transition Metal-Based Semiconducting Material Series With Appreciable Optical Characteristics,” Physical Chemistry Chemical Physics 22 (2020): 24337–24350.
- 19E. T. McClure, M. R. Ball, W. Windl, and P. M. Woodward, “Cs2AgBiX6 (X= Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors,” Chemistry of Materials 28 (2016): 1348–1354.
- 20M. N. Islam and J. Podder, “Semiconductor to Metallic Transition in Double Halide Perovskites Cs2AgBiCl6 Through Induced Pressure: A DFT Simulation for Optoelectronic and Photovoltaic Applications,” Heliyon 8 (2022): 10032.
- 21J. Luo, S. Li, H. Wu, et al., “Cs2AgInCl6 Double Perovskite Single Crystals: Parity Forbidden Transitions and Their Application for Sensitive and Fast UV Photodetectors,” ACS Photonics 5 (2018): 398–405.
- 22S. Iqbal, G. M. Mustafa, M. Asghar, et al., “Tuning the Optoelectronic and Thermoelectric Characteristics of Narrow Bandgap Rb2AlInX6 (X=Cl, Br, I) Double Perovskites: A DFT Study,” Materials Science in Semiconductor Processing 143 (2022): 106551.
- 23M. Moutassem, T. Seddik, D. E. S. Mohammed, et al., “Metal to Semiconductor Transition and Figure of Merit Enhancement of Li2CuAs Compound by Na Substitution,” Bulletin of Materials Science 45 (2022): 110.
- 24M. Freyss, “Density Functional Theory,” 2015.
- 25D. Behera, R. Sharma, H. Ullah, H. S. Waheed, and S. K. Mukherjee, “Electronic, Optical, and Thermoelectric Investigations of Zintl Phase AAg2Se2 (A=Sr, Ba) Compounds: A First First-Principles Approach,” Journal of Solid State Chemistry 312 (2022): 123259.
- 26J. A. Abraham, D. Behera, K. Srivastava, et al., “Insight Into the Structural, Elastic, Lattice Dynamical, Optical, and Thermoelectric Properties of Novel Heusler Alloy LiCaBi by First-Principles Approach,” Chinese Journal of Physics 89 (2023): 859–870.
10.1016/j.cjph.2023.10.021 Google Scholar
- 27D. Koller, F. Tran, and P. Blaha, “Merits and Limits of the Modified Becke-Johnson Exchange Potential,” Physical Review B 83 (2011): 195134.
- 28P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, “Full-Potential, Linearized Augmented Plane Wave Programs for Crystalline Systems,” Computer Physics Communications 59 (1990): 399–415.
- 29K. Schwarz, “DFT Calculations of Solids With LAPW and WIEN2k,” Journal of Solid State Chemistry 176 (2003): 319–328.
- 30D. Behera, S. Al-Qaisi, M. Manzoor, et al., “First Principles Studies on Optoelectronics and Transport Properties of KSrY (Y= Sb, bi) for Renewable Energy Application,” Materials Science and Engineering B 297 (2023): 116765.
- 31D. Behera, A. Dixit, A. Azzouz-Rached, et al., “Prediction of New MAX Phase Zr2MSiC2 (M= Ti, V) Compounds as a Promising Candidate for Future Engineering: DFT Calculations,” Materials Science and Engineering B 301 (2024): 117141.
- 32M. Jamal, M. Bilal, I. Ahmad, and S. Jalali-Asadabadi, “IRelast Package,” Journal of Alloys and Compounds 735 (2018): 569–579.
- 33S. Al-Qaisi, H. Rached, T. A. Alrebdi, et al., “Study of Mechanical, Optical, and Thermoelectric Characteristics of Ba2XMoO6 (X= Zn, cd) Double Perovskite for Energy Harvesting,” Journal of Computational Chemistry 44 (2023): 27209.
- 34M. R. Filip, S. Hillman, A. A. Haghighirad, H. J. Snaith, and F. Giustino, “Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2BiAgBr6 From Theory and Experiment,” Journal of Physical Chemistry Letters 7 (2016): 2579–2585.
- 35D. Behera, R. Sharma, and S. K. Mukherjee, “Thermoelectric Properties of K2SnBr6: A DFT Insight,” 2024, AIP Conference Proceedings, 2995, AIP Publishing.
- 36A. E. Fedorovskiy, N. A. Drigo, and M. K. Nazeeruddin, “The Role of Goldschmidt's Tolerance Factor in the Formation of A2BX6 Double Halide Perovskites and Its Optimal Range,” Small Methods 4 (2020): 1900426.
- 37D. Behera and S. K. Mukherjee, “Structural, Elastic, Electronic and Thermoelectric Properties of K2GeBr6: A First Principle Approach,” Materials Today Proceedings (2023): 338.
- 38S. Belhachi, S. Al-Qaisi, S. Samah, et al., “DFT Analysis of Ba2NbRhO6: A Promising Double Perovskite for Sustainable Energy Applications,” Journal of Inorganic and Organometallic Polymers and Materials (2024): 1–16.
- 39S. Al-Qaisi, N. Iram, A. Boutramine, et al., “Theoretical Investigation of a New Double Perovskites of Rb2CuSbZ6 (Z= F, Br, and I) for Sustainable Technologies,” Journal of Inorganic and Organometallic Polymers and Materials (2024): 1–13.
- 40D. Behera, M. Boudjelal, M. Batouche, T. Seddik, D. Hemidi, and S. K. Mukherjee, “First Principle Studies on Structural, Electronic, Elastic, Optical, and Thermoelectric Properties of XGeCl3 (X = Rb/Cs): Promising Compounds for Green Energy Application,” International Journal of Quantum Chemistry 124 (2024): e27342, https://doi.org/10.1002/qua.27342.
- 41A. Saxena, A. Dixit, D. Behera, J. A. Abraham, R. Sharma, and S. K. Mukherjee, “Insight on Structural, Electronic and Thermoelectric Properties of Perovskite AgBaCl3 by an Ab-Initio for Solar Cell and Renewable Energy,” Materials Today Proceedings (2023): 288.
- 42M. Manzoor, D. Behera, R. Sharma, et al., “Investigation of the Structural, Mechanical, Optoelectronic and, Thermoelectric Characteristics of Cubic GeTiO3: An Ab Initio Study,” Materials Today Communications 34 (2023): 105053.
- 43D. Behera, M. Manzoor, R. Sharma, M. M. Salah, I. Stich, and S. K. Mukherjee, “A Comprehensive First-Principles Investigation of SnTiO3 Perovskite for Optoelectronic and Thermoelectric Applications,” Crystals 13 (2023): 408.
- 44A. Dixit, A. Saxena, D. Behera, J. A. Abraham, R. Sharma, and S. K. Mukherjee, “First Principles Study on Structural, Mechanical, and Thermoelectric Properties of Half-Heusler Alloy (KLiTe),” Materials Today Proceedings (2023): 093.
- 45D. Behera, R. Sharma, and S. K. Mukherjee, “Structural, Phonon and Elastic Properties of Semimetal YSb: A DFT Study,” Materials Today Proceedings (2023): 053.
- 46E. Jain, D. Behera, Y. Agrawal, et al., “First Principles Investigation on Half Metallic Ferromagnetism Properties of Cubic VLaO3 Compound,” Materials Today Proceedings (2023): 049.
- 47I. N. Frantsevich, Elastic Constants and Elastic Moduli of Metals and Insulators (Reference Book, 1982).
- 48D. Behera and S. K. Mukherjee, “Insight to Structural, Electronic, Optical and Thermoelectric Properties of NaCaSb and KCaSb Half Heusler Compounds: A DFT Approach,” JETP Letters 117 (2023): 1–14.
- 49E. Schreiber, O. L. Anderson, N. Soga, and J. F. Bell, “Elastic Constants and Their Measurement,” ASME Journal of Applied Mechanics 42 (1975): 747–748.
10.1115/1.3423687 Google Scholar
- 50D. Behera and S. K. Mukherjee, “First-Principles Calculations to Investigate Structural, Optoelectronics and Thermoelectric Properties of Lead Free Cs2GeSnX6 (X=Cl, Br),” Materials Science and Engineering B 292 (2023): 116421.
- 51D. Behera, A. Dixit, B. Nahak, et al., “Theoretical Insight on the Electronic Band Structure, Mechanical, Vibrational and Thermodynamic Characteristic of Antiperovskites RE3InN (RE= Y and La),” Materials Today Communications 35 (2023): 105618.
- 52M. Manzoor, D. Behera, S. Chowdhury, et al., “First-Principles Calculations to Investigate Structural, Dynamical, Thermodynamic and Thermoelectric Properties of CdYF3 Perovskite,” Computational and Theoretical Chemistry 1217 (2022): 113928.
- 53T. Katsura and Y. Tange, “A Simple Derivation of the Birch–Murnaghan Equations of State (EOSs) and Comparison With EOSs Derived From Other Definitions of Finite Strain,” Minerals 9 (2019): 745.
- 54D. Behera, A. Dixit, K. Kumari, et al., “Structural, Elastic, Mechanical, and Thermodynamic Characteristic of NaReO3 and KReO3 Perovskite Oxides From First Principles Study,” European Physical Journal Plus 137 (2022): 1345.
- 55D. Behera, M. Manzoor, and S. K. Mukherjee, “Incorporation of Te in Enhancing Thermoelectric Response of AeAg2SeTe (Ae= Sr, Ba) Compounds: A DFT Insight,” Computational Condensed Matter 33 (2022): e00757.
- 56S. Lakra and S. Kumar Mukherjee, “Study of Structural, Electronic, Optical and Thermodynamic Properties of SnSiO3 Compound: A DFT Study,” Materials Today Proceedings (2023): 231, https://doi.org/10.1016/j.matpr.2023.01.231.
10.1016/j.matpr.2023.01.231 Google Scholar
- 57C. M. Kube, “Elastic Anisotropy of Crystals,” AIP Advances 6 (2016): 95209.
- 58D. Behera, B. Akila, R. Amraoui, et al., “Excellent Thermoelectric Performance in KBaTh (Th= Sb, bi) Based Half-Heusler Compounds and Design of Actuator for Efficient and Sustainable Energy Harvesting Applications,” Crystals 13 (2023): 1551.
- 59D. Behera, M. Manzoor, M. Maharana, et al., “Structural, Electronic, Optical, and Thermoelectric Response of Zintl Phase AAg2S2 (A= Sr/Ba) Compounds for Renewable Energy Applications,” Physica B: Condensed Matter 649 (2023): 414446.
- 60M. Kumari, J. A. Abraham, R. Sharma, et al., “Theoretical Insights Into the Structural, Optoelectronic, Thermoelectric, and Thermodynamic Behavior of Novel Quaternary LiZrCoX (X= Ge, Sn) Compounds Based on First-Principles Study,” RSC Advances 13 (2023): 29522–29535.
- 61D. Behera, A. Azzouz-Rached, A. Bouhenna, M. M. Salah, A. Shaker, and S. K. Mukherjee, “First-Principles Studies on the Physical Properties of the Half Heusler RbNbCd and RbNbZn Compounds: A Promising Material for Thermoelectric Applications,” Crystals 13 (2023): 618.
- 62D. Behera, M. Manzoor, R. Sharma, M. W. Iqbal, and S. K. Mukherjee, “First Principles Insight on Structural, Opto-Electronic and Transport Properties of Novel Zintl-Phase AMg2Bi2 (A=Sr, Ba),” Journal of Solid State Chemistry 320 (2023): 123860.
- 63A. Dixit, A. Dahshan, S. K. Tripathi, et al., “Insight Into the Structural, Electronic, Optical, Thermodynamic and Thermoelectric Properties of the Cubic PbSiO3 Perovskite: A First-Principles Computation,” Chinese Journal of Physics 92 (2023): 1474–1491.
10.1016/j.cjph.2023.10.023 Google Scholar
- 64H. B. Ul, R. Ahmed, S. Goumri-Said, A. Shaari, and A. Afaq, “Electronic Structure Engineering of ZnO With the Modified Becke–Johnson Exchange Versus the Classical Correlation Potential Approaches,” Phase Transitions 86 (2013): 1167–1177, https://doi.org/10.1080/01411594.2012.755183.
- 65A. Janotti, D. Segev, and C. G. Van de Walle, “Effects of Cation States on the Structural and Electronic Properties of III-Nitride and II-Oxide Wide-Band-Gap Semiconductors,” Physical Review B 74 (2006): 045202, https://doi.org/10.1103/PhysRevB.74.045202.
- 66M. Manzoor, D. Behera, R. Sharma, et al., “Structural, Electronic, Optical, and Thermoelectric Studies on Zintl SrCd2Pn2 (Pn= P/as) Compounds for Solar Cell Applications: A First Principle Approach,” Journal of Solid State Chemistry 326 (2023): 124188.
- 67D. Behera, J. A. Abraham, R. Sharma, S. K. Mukerjee, and E. Jain, “First Principles Study of New d0 Half-Metallic Ferromagnetism in CsBaC Ternary Half-Heusler Alloy,” Journal of Superconductivity and Novel Magnetism 35 (2022): 3431–3437.
- 68D. Behera, B. Akila, S. K. Mukherjee, T. A. Geleta, A. Shaker, and M. M. Salah, “Studies on Optoelectronic and Transport Properties of XSnBr3 (X= Rb/Cs): A DFT Insight,” Crystals 13 (2023): 1437.
- 69J. A. Abraham, D. Behera, K. Kumari, A. Srivastava, R. Sharma, and S. K. Mukherjee, “A Comprehensive DFT Analysis on Structural, Electronic, Optical, Thermoelectric, SLME Properties of New Double Perovskite Oxide Pb2ScBiO6,” Chemical Physics Letters (2022): 139987.
- 70D. Behera and S. K. Mukherjee, “Theoretical Investigation of the Lead-Free K2InBiX6 (X= Cl, Br) Double Perovskite Compounds Using First Principle Calculation,” JETP Letters (2022): 1–10.
- 71D. Behera and S. K. Mukherjee, “Optoelectronics and Transport Phenomena in Rb2InBiX6 (X=Cl, Br) Compounds for Renewable Energy Applications: A DFT Insight,” Chemistry 4 (2022): 1044–1059.
- 72M. H. Cohen and F. S. Ham, “Electron Effective Mass in Solids—A Generalization of Bardeen's Formula,” Journal of Physics and Chemistry of Solids 16 (1960): 177–183.
- 73D. Bahera, A. Dixit, B. Nahak, et al., “Structural, Electronic, Elastic, Vibrational and Thermodynamic Properties of Antiperovskites Mg3NX (X=Ge, Sn): A DFT Study,” Physics Letters A 453 (2022): 128478.
10.1016/j.physleta.2022.128478 Google Scholar
- 74A. Dixit, D. Behera, S. K. Tripathi, et al., “Vibrational, Mechanical, Electronic and Thermodynamic Properties of Rhenium-Based Perovskites XReO3 (X= Li, be) by an Ab-Initio Computation,” Materials Science and Engineering B 294 (2023): 116545.
- 75M. Manzoor, D. Bahera, R. Sharma, F. Tufail, M. W. Iqbal, and S. K. Mukerjee, “Investigated the Structural, Optoelectronic, Mechanical, and Thermoelectric Properties of Sr2BTaO6 (B=Sb, Bi) for Solar Cell Applications,” International Journal of Energy Research 46 (2022): 8669.
- 76D. Behera, M. Manzoor, M. W. Iqbal, S. Lakra, and S. K. Mukherjee, “Revealing Excellent Electronic, Optical, and Thermoelectric Behavior of EU Based Euag2y2 (Y= S/Se): For Solar Cell Applications,” Computational Condensed Matter 32 (2022): e00723.
- 77D. Behera, B. Mohammed, S. Taieb, B. Mokhtar, S. Al-Qaisi, and S. K. Mukherjee, “First-Principle Investigations on Optoelectronics and Thermoelectric Properties of Lead-Free Rb2InSbX6 (X= cl, Br) Double Perovskites: For Renewable Energy Applications,” European Physical Journal Plus 138 (2023): 520.
- 78T. Seddik, D. Behera, M. Batouche, et al., “Electronic Properties, Linear and Nonlinear Performance of KAg Ch (Ch=S, se) Compounds: A First-Principles Study,” Crystals 13 (2023): 726.
- 79H. A. Kramers, “La diffusion de la lumiere par les atomes,” Atti Cong. Intern. Fisica (Transactions of Volta Centenary Congress) Como 2 (1927): 545–557.
- 80M. Manzoor, D. Behera, R. Sharma, M. W. Iqbal, and S. K. Mukherjee, “First Principles Insights on the Structural, Mechanical, Dynamical, Thermoelectric and Thermodynamics Properties of Novel Topological (ScSb) Semi-Metal,” Materials Science and Engineering B 291 (2023): 116372.
- 81M. Nabi and D. C. Gupta, “Study of the Magneto-Electronic, Optical, Thermal and Thermoelectric Applications of Double Perovskites Ba 2 MTaO 6 (M= Er, tm),” RSC Advances 9 (2019): 15852–15867.
- 82U. Rani, P. K. Kamlesh, R. Singh, et al., “Exploring Properties of Organometallic Double Perovskite (CH3NH3) 2AgInCl6: A Novel Material for Energy Conversion Devices,” Modern Physics Letters B 38 (2024): 2450144.
- 83G. Kadim and R. Masrour, “First-Principles Investigation of Electronic and Optical Properties of Fe Doped in CsBrO3 for Enhanced Photocatalytic Hydrogen Production,” International Journal of Hydrogen Energy 47 (2022): 25522–25530.
- 84D. P. Rai, A. Laref, M. Khuili, S. Al-Qaisi, T. V. Vu, and D. D. Vo, “Electronic, Magnetic and Optical Properties of Monolayer (ML) Hexagonal ZnSe on Vacancy Defects at Zn Sites From DFT-1/2 Approach,” Vacuum 182 (2020): 109597.
- 85M. Khuili, M. Bounbaa, N. Fazouan, et al., “First-Principles Study of Structural, Elastic, Optoelectronic and Thermoelectric Properties of B-Site-Ordered Quadruple Perovskite Ba4Bi3NaO12,” Journal of Solid State Chemistry 322 (2023): 123955.
- 86A. M. Mebed, M. Mushtaq, I. Muhammad, et al., “Structure, Half-Metallic and Magnetic Properties of Bulk and (001) Surface of Rb2XMoO6 (X=Cr, Sc) Double Perovskites: A DFT+U Study,” Physica Scripta 98 (2022): 15807.
10.1088/1402-4896/aca56b Google Scholar
- 87R. Abt, C. Ambrosch-Draxl, and P. Knoll, “Optical Response of High Temperature Superconductors by Full Potential LAPW Band Structure Calculations,” Physica B: Condensed Matter 194 (1994): 1451–1452.
- 88A. Azam, R. Sharma, D. Behera, et al., “Insight Into the Structural, Optoelectronic, and Thermoelectric Properties of Fe 2 HfSi Heusler by DFT Investigation,” RSC Advances 13 (2023): 15437–15447.