Infrared Spectroscopy of Ethanethiol Monomers and Dimers at MP2 Level: Characterizing the Dimer Formation and Hydrogen Bond
Airan F. S. Brito
Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, Brazil
Search for more papers by this authorAdelia J. A. Aquino
Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA
Search for more papers by this authorJosé Roberto dos Santos Politi
Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, Brazil
Search for more papers by this authorCorresponding Author
João B. L. Martins
Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, Brazil
Correspondence:
João B. L. Martins ([email protected])
Search for more papers by this authorAiran F. S. Brito
Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, Brazil
Search for more papers by this authorAdelia J. A. Aquino
Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA
Search for more papers by this authorJosé Roberto dos Santos Politi
Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, Brazil
Search for more papers by this authorCorresponding Author
João B. L. Martins
Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, Brazil
Correspondence:
João B. L. Martins ([email protected])
Search for more papers by this authorFunding: The authors wish to thank the Federal District Research Support Foundation (FAPDF 00193-00000869/2021-31). This work has been partially supported by the Brazilian National Council for Scientific and Technological Development (CNPq, 306682/2021-4) and Universidade de Brasília (UnB).
ABSTRACT
Ethanethiol, also known as ethyl mercaptan, is an organosulfur compound that appears as a colorless liquid with a distinctive odor. It has been detected in the interstellar medium, and its self-association has been the subject of a few known experimental studies, where the SH vibrational mode was used. However, unlike the analogous ethanol dimer, the ethanethiol dimer has not been thoroughly explored theoretically. In this study, ethanethiol and dimers were investigated using the MP2 method with various basis sets to determine the properties and stability of these structures. For the monomer, both trans and gauche structures were computed, with the gauche conformer being more stable, consistent with the available data in the literature. Local mode decomposition analysis of monomers showed that the CH2 rocking mode, associated with the CSH bending, is present only for the gauche isomer aligning with the experimental assignments. Furthermore, eight stable dimer configurations were identified and categorized into three groups: trans–trans, gauche–gauche, and trans–gauche isomers. Among these, the trans–gauche isomer was found to be the most stable. Dispersion is the dominant term for the ethanethiol dimer.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The datasets generated for this study can be found in the Supporting Information.
Supporting Information
Filename | Description |
---|---|
jcc27540-sup-0001-Supinfo.docxWord 2007 document , 783.7 KB |
Appendix S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. F. Rodríguez-Almeida, I. Jiménez-Serra, V. M. Rivilla, et al., “Thiols in the Interstellar Medium: First Detection of HC(O)SH and Confirmation of C2H5SH,” Astrophysical Journal Letters 912 (2021): L11, https://doi.org/10.3847/2041-8213/abf7cb.
- 2R. A. Linke, M. A. Frerking, and P. Thaddeus, “Interstellar Methyl Mercaptan,” Astrophysical Journal 234 (1979): L139, https://doi.org/10.1086/183125.
- 3P. Gorai, A. Das, A. Das, B. Sivaraman, E. E. Etim, and S. K. Chakrabarti, “A Search for Interstellar Monohydric Thiols,” Astrophysical Journal 836 (2017): 70, https://doi.org/10.3847/1538-4357/836/1/70.
- 4D. V. Mifsud, Z. Kaňuchová, P. Herczku, et al., “Sulfur Ice Astrochemistry: A Review of Laboratory Studies,” Space Science Reviews 217 (2021): 14, https://doi.org/10.1007/s11214-021-00792-0.
- 5X. Li, B. Lu, L. Wang, et al., “Unraveling Sulfur Chemistry in Interstellar Carbon Oxide Ices,” Nature Communications 13 (2022): 7150, https://doi.org/10.1038/s41467-022-34949-4.
- 6R. L. Hudson and P. A. Gerakines, “Infrared Spectra and Interstellar Sulfur: New Laboratory Results for H2S and Four Malodorous Thiol Ices,” Astrophysical Journal 867 (2018): 138, https://doi.org/10.3847/1538-4357/aae52a.
- 7G. Bilalbegović and G. Baranović, “Sulphur-Bearing Species in Molecular Clouds,” Monthly Notices of the Royal Astronomical Society 446 (2015): 3118–3129, https://doi.org/10.1093/mnras/stu2313.
- 8S. Pavithraa, R. R. J. Methikkalam, P. Gorai, et al., “Qualitative Observation of Reversible Phase Change in Astrochemical Ethanethiol Ices Using Infrared Spectroscopy,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 178 (2017): 166–170, https://doi.org/10.1016/j.saa.2017.01.023.
- 9R. B. de Alencastro and C. Sandorfy, “A Low Temperature Infrared Study of Self-Association in Thiols,” Canadian Journal of Chemistry 50 (1972): 3594–3600, https://doi.org/10.1139/v72-574.
10.1139/v72-574 Google Scholar
- 10L. Fu, H.-L. Han, and Y.-P. Lee, “Infrared Absorption of Methanethiol Clusters (CH3SH)n, n = 2–5, Recorded with a Time-of-Flight Mass Spectrometer Using IR Depletion and VUV Ionization,” Journal of Chemical Physics 137 (2012): 234307, https://doi.org/10.1063/1.4770227.
- 11M. S. Pavan, S. Sarkar, and T. N. G. Row, “Exploring the Rare S—H…S Hydrogen Bond Using Charge Density Analysis in Isomers of Mercaptobenzoic Acid,” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 73 (2017): 626–633, https://doi.org/10.1107/S2052520617008344.
- 12T. Steiner, “S—H…S Hydrogen-Bond Chain in Thiosalicylic Acid,” Acta Crystallographica Section C – Crystal Structure Communications 56 (2000): 876–877, https://doi.org/10.1107/S0108270100005898.
- 13S. Pavithraa, D. Sahu, G. Seth, et al., “SH Stretching Vibration of Propanethiol Ice—A Signature for Its Identification in the Interstellar Icy Mantles,” Astrophysics and Space Science 362 (2017): 126, https://doi.org/10.1007/s10509-017-3103-2.
- 14A. Belloche, H. S. P. Müller, K. M. Menten, P. Schilke, and C. Comito, “Complex Organic Molecules in the Interstellar Medium: IRAM 30 m Line Survey of Sagittarius B2(N) and (M),” Astronomy and Astrophysics 559 (2013): A47, https://doi.org/10.1051/0004-6361/201321096.
- 15J. C. Santos, J. Enrique-Romero, T. Lamberts, H. Linnartz, and K.-J. Chuang, “Formation of S-Bearing Complex Organic Molecules in Interstellar Clouds Via Ice Reactions with C2H2, HS, and Atomic H,” ACS Earth and Space Chemistry Journal 8 (2024): 1646–1660, https://doi.org/10.1021/acsearthspacechem.4c00150.
- 16J. Chela-Flores, “The Sulphur Dilemma: Are There Biosignatures on Europa's Icy and Patchy Surface?,” International Journal of Astrobiology 5 (2006): 17–22, https://doi.org/10.1017/S1473550406002862.
- 17D. Pal and P. Chakrabarti, “Non-Hydrogen Bond Interactions Involving the Methionine Sulfur Atom,” Journal of Biomolecular Structure & Dynamics 19 (2001): 115–128, https://doi.org/10.1080/07391102.2001.10506725.
- 18P. Thaddeus, M. L. Kutner, A. A. Penzias, R. W. Wilson, and K. B. Jefferts, “Interstellar Hydrogen Sulfide,” Astrophysical Journal 176 (1972): L73, https://doi.org/10.1086/181023.
- 19D. T. Halfen, L. M. Ziurys, S. Brünken, C. A. Gottlieb, M. C. McCarthy, and P. Thaddeus, “Detection of a New Interstellar Molecule: Thiocyanic Acid HSCN,” Astrophysical Journal 702 (2009): L124–L127, https://doi.org/10.1088/0004-637X/702/2/L124.
- 20E. Arunan, G. R. Desiraju, R. A. Klein, et al., “Definition of the Hydrogen Bond (IUPAC Recommendations 2011),” Pure and Applied Chemistry 83 (2011): 1637–1641, https://doi.org/10.1351/PAC-REC-10-01-02.
- 21A. Chand and H. S. Biswal, “Hydrogen Bonds with Chalcogens: Looking Beyond the Second Row of the Periodic Table,” Journal of the Indian Institute of Science 100 (2020): 77–100, https://doi.org/10.1007/s41745-019-00140-w.
- 22I. V. Zuika and Y. A. Bankovskii, “The Hydrogen Bond in Sulphur-Containing Compounds,” Russian Chemical Reviews 42 (1973): 22–36, https://doi.org/10.1070/RC1973v042n01ABEH002562.
10.1070/RC1973v042n01ABEH002562 Google Scholar
- 23A. Das, P. K. Mandal, F. J. Lovas, C. Medcraft, N. R. Walker, and E. Arunan, “The H2S Dimer is Hydrogen-Bonded: Direct Confirmation from Microwave Spectroscopy,” Angewandte Chemie, International Edition 57 (2018): 15199–15203, https://doi.org/10.1002/anie.201808162.
- 24J. B. L. Martins, R. P. Quintino, J. R. S. Politi, D. Sethio, R. Gargano, and E. Kraka, “Computational Analysis of Vibrational Frequencies and Rovibrational Spectroscopic Constants of Hydrogen Sulfide Dimer Using MP2 and CCSD(T),” Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy 239 (2020): 1–9, https://doi.org/10.1016/j.saa.2020.118540.
- 25S. Mukherjee, S. R. Palit, and S. K. De, “S-H…S Type Hydrogen-Bonding Interaction,” Journal of Physical Chemistry 74 (1970): 1389–1390, https://doi.org/10.1021/j100701a041.
- 26B. Brzezinski and G. Zundel, “Intramolecular Negatively Charged SH…S− ⇌ −S…HS Hydrogen Bonds With Large Proton Polarizability,” Chemical Physics Letters 95 (1983): 458–462, https://doi.org/10.1016/0009-2614(83)80594-6.
- 27A. Bhattacherjee, Y. Matsuda, A. Fujii, and S. Wategaonkar, “The Intermolecular S-H⋯Y (Y=S,O) Hydrogen Bond in the H2S Dimer and the H2S-MeOH Complex,” ChemPhysChem 14 (2013): 905–914, https://doi.org/10.1002/cphc.201201012.
- 28S. Sarkar, M. Morwal, and B. Bandyopadhyay, “Cooperative Nature of Sulfur Centered Hydrogen Bond: Investigation of (H2S)n (n = 2–4) Clusters Using an Affordable Yet Accurate Level of Theory,” Physical Chemistry Chemical Physics 21 (2019): 25439–25448, https://doi.org/10.1039/c9cp05326c.
- 29H. S. Biswal and S. Wategaonkar, “Sulfur, Not Too Far Behind O, N, and C: SH⋯ π Hydrogen Bond,” Journal of Physical Chemistry A 113 (2009): 12774–12782, https://doi.org/10.1021/jp907747w.
- 30F. Salama, L. J. Allamandola, F. C. Witteborn, D. P. Cruikshank, S. A. Sandford, and J. D. Bregman, “The 2.5–5.0 μm Spectra of Io: Evidence for H2S and H2O Frozen in SO2,” Icarus 83 (1990): 66–82, https://doi.org/10.1016/0019-1035(90)90006-U.
- 31R. E. Bumgarner, D. J. Pauley, and S. G. Kukolich, “Microwave Spectra and Structure for SO2⋯H2S, SO2⋯HDS, and SO2⋯D2S Complexes,” Journal of Chemical Physics 87 (1987): 3749–3752, https://doi.org/10.1063/1.452929.
- 32N. S. Venkataramanan, “Electronic Structure, Stability, and Cooperativity of Chalcogen Bonding in Sulfur Dioxide and Hydrated Sulfur Dioxide Clusters: A DFT Study and Wave Functional Analysis,” Structural Chemistry 33 (2022): 179–193, https://doi.org/10.1007/s11224-021-01827-6.
- 33J. R. S. Politi, J. B. L. Martins, and B. J. C. Cabral, “Born-Oppenheimer Molecular Dynamics and Electronic Properties of Liquid H2S: The Importance of a Non-Local Approach to Dispersion Interactions,” Journal of Molecular Liquids 366 (2022): 120252, https://doi.org/10.1016/j.molliq.2022.120252.
- 34J. B. L. Martins and B. J. C. Cabral, “Electron Binding Energies of SO2 at the Surface of a Water Cluster,” Journal of Chemical Physics 159 (2023): 234301, https://doi.org/10.1063/5.0182192.
- 35H. S. Biswal, S. Bhattacharyya, A. Bhattacherjee, and S. Wategaonkar, “Nature and Strength of Sulfur-Centred Hydrogen Bonds: Laser Spectroscopic Investigations in the Gas Phase and Quantum-Chemical Calculations,” International Reviews in Physical Chemistry 34 (2015): 99–160, https://doi.org/10.1080/0144235X.2015.1022946.
- 36C. M. Lousada and P. A. Korzhavyi, “The H2S Dimer Revisited – Insights from Wave-Function and Density Functional Theory Methods. Ab Initio Molecular Dynamics Simulations of Liquid H2S,” Computational & Theoretical Chemistry 1180 (2020): 112821, https://doi.org/10.1016/j.comptc.2020.112821.
- 37L. A. H. van Bergen, M. Alonso, A. Palló, L. Nilsson, F. De Proft, and J. Messens, “Revisiting Sulfur H-Bonds in Proteins: The Example of Peroxiredoxin AhpE,” Scientific Reports 6 (2016): 30369, https://doi.org/10.1038/srep30369.
- 38P. Bhadoria and V. Ramanathan, “Sulfur Centered Hydrogen Bonding in Thioglycolic Acid and Its Clusters: A Computational Exploration,” Journal of Physical Chemistry A 127 (2023): 8095–8109, https://doi.org/10.1021/acs.jpca.3c04258.
- 39A. Paul and R. Thomas, “Evidences for Sulfur Centered Hydrogen Bond With Sulfur Atoms as a Donor in Aromatic Thiols and Aliphatic Thiols in Aqueous Solution,” Journal of Molecular Liquids 348 (2022): 118078, https://doi.org/10.1016/j.molliq.2021.118078.
- 40M. K. Tripathi and V. Ramanathan, “Nature and Strength of Sulfur-Centered Hydrogen Bond in Methanethiol Aqueous Solutions,” Journal of Physical Chemistry A 127 (2023): 2265–2273, https://doi.org/10.1021/acs.jpca.2c08314.
- 41P. Zhou, F. Tian, F. Lv, and Z. Shang, “Geometric Characteristics of Hydrogen Bonds Involving Sulfur Atoms in Proteins,” Proteins: Structure, Function, and Bioinformatics 76 (2009): 151–163, https://doi.org/10.1002/prot.22327.
- 42S. Choi, T. Y. Kang, K.-W. Choi, et al., “Conformationally Specific Vacuum Ultraviolet Mass-Analyzed Threshold Ionization Spectroscopy of Alkanethiols: Structure and Ionization of Conformational Isomers of Ethanethiol, Isopropanethiol, 1-Propanethiol, tert -Butanethiol, and 1-Butanethiol,” Journal of Physical Chemistry A 112 (2008): 7191–7199, https://doi.org/10.1021/jp801559t.
- 43A. J. Barnes, H. E. Hallam, and J. D. R. Howells, “Infra-Red Cryogenic Studies. Part 9—Methanethiol and Ethanethiol in Matrices,” Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 68 (1972): 737–743, https://doi.org/10.1039/F29726800737.
- 44M. K. Tripathi, A. Paul, and V. Ramanathan, “Revisiting Structure and Conformational Stability of Ethanethiol,” Journal of Molecular Structure 1223 (2021): 128997, https://doi.org/10.1016/j.molstruc.2020.128997.
- 45J. R. Durig, W. E. Bucy, C. J. Wurrey, and L. A. Carreira, “Raman Spectra of Gases. XVI. Torsional Transitions in Ethanol and Ethanethiol,” Journal of Physical Chemistry 79 (1975): 988–993, https://doi.org/10.1021/j100577a009.
- 46D. Smith, J. P. Devlin, and D. W. Scott, “Conformational Analysis of Ethanethiol and 2-Propanethiol,” Journal of Molecular Spectroscopy 25 (1968): 174–184, https://doi.org/10.1016/0022-2852(68)80004-9.
- 47B. J. Miller, D. L. Howard, J. R. Lane, H. G. Kjaergaard, M. E. Dunn, and V. Vaida, “SH-Stretching Vibrational Spectra of Ethanethiol and Tert- Butylthiol,” Journal of Physical Chemistry. A 113 (2009): 7576–7583, https://doi.org/10.1021/jp9017162.
- 48M. L. Senent, C. Puzzarini, R. Domínguez-Gómez, M. Carvajal, and M. Hochlaf, “Theoretical Spectroscopic Characterization at Low Temperatures of Detectable Sulfur-Organic Compounds: Ethyl Mercaptan and Dimethyl Sulfide,” Journal of Chemical Physics 140 (2014): 124302, https://doi.org/10.1063/1.4868640.
- 49R. E. Schmidt and C. R. Quade, “Microwave Spectrum of Ethyl Mercaptan,” Journal of Chemical Physics 62 (1975): 3864–3874, https://doi.org/10.1063/1.430307.
- 50J. Nakagawa, K. Kuwada, and M. Hayashi, “Microwave Spectrum, Structure, Dipole Moment and Internal Rotation of Ethanethiol. II. Gauche Isomer,” Bulletin of the Chemical Society of Japan 49 (1976): 3420–3432, https://doi.org/10.1246/bcsj.49.3420.
- 51L. Kolesniková, B. Tercero, J. Cernicharo, et al., “Spectroscopic Characterization and Detection of Ethyl Mercaptan in Orion,” Astrophysical Journal 784 (2014): L7, https://doi.org/10.1088/2041-8205/784/1/L7.
- 52M. Takahashi, H. Nagasaka, and Y. Udagawa, “Electron Momentum Spectroscopy Study of Lone Pair Orbitals of Thiols and Dimethyl Sulfide,” Journal of Physical Chemistry. A 101 (1997): 528–532, https://doi.org/10.1021/jp961912j.
- 53H. Wolff and J. Szydlowski, “Vibrational Spectra and Rotational Isomerism of Ethanethiol and Ethanethiol-D1,” Canadian Journal of Chemistry 63 (1985): 1708–1712, https://doi.org/10.1139/v85-287.
- 54M. Kieninger and O. N. Ventura, “Calculations of the Infrared and Raman Spectra of Simple Thiols and Thiol–Water Complexes,” International Journal of Quantum Chemistry 111 (2011): 1843–1857, https://doi.org/10.1002/qua.22890.
- 55C. Puzzarini, M. L. Senent, R. Domínguez-Gómez, M. Carvajal, M. Hochlaf, and M. M. Al-Mogren, “Accurate Spectroscopic Characterization of Ethyl Mercaptan and Dimethyl Sulfide Isotopologues: A Route Toward Their Astrophysical Detection,” Astrophysical Journal 796 (2014): 50, https://doi.org/10.1088/0004-637X/796/1/50.
- 56J. Purzycka, T. Custer, and M. Gronowski, “UV Photolysis of C2H5SH in Solid CO and Ar,” ACS Earth and Space Chemistry Journal 6 (2022): 131–143, https://doi.org/10.1021/acsearthspacechem.1c00310.
- 57H. S. P. Müller, A. Belloche, L.-H. Xu, et al., “Exploring Molecular Complexity With ALMA (EMoCA): Alkanethiols and Alkanols in Sagittarius B2(N2),” Astronomy and Astrophysics 587 (2016): A92, https://doi.org/10.1051/0004-6361/201527470.
- 58M. Hayashi, H. Imaishi, and K. Kuwada, “Microwave Spectrum, Structure and Dipole Moment of Ethanethiol. I. Trans Isomer,” Bulletin of the Chemical Society of Japan 47 (1974): 2382–2388, https://doi.org/10.1246/bcsj.47.2382.
- 59M. C. R. Symons and G. P. Archer, “Solvation of Thiols. An Infrared and Nuclear Magnetic Resonance Study of Ethanethiol,” Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 84 (1988): 2499, https://doi.org/10.1039/f19888402499.
- 60R. B. De Alencastro, “A Low Temperature Infrared Study on the Association of Thiols with Organic Oxygen Bases,” Canadian Journal of Chemistry 52 (1974): 738–743, https://doi.org/10.1139/v74-116.
10.1139/v74-116 Google Scholar
- 61A. J. Barnes and J. D. R. Howells, “Infra-Red Cryogenic Studies. Part 7.—Hydrogen Sulphide in Matrices,” Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 68 (1972): 729–736, https://doi.org/10.1039/F29726800729.
- 62L. D. Colebrook and D. S. Tarbell, “Evidence for Hydrogen Bonding in Thiols From N.M.R. Measurements,” Proceedings of the National Academy of Sciences of the United States of America 47 (1961): 993–996, https://doi.org/10.1073/pnas.47.7.993.
- 63I. Bakó and G. Pálinkás, “Ab Initio Studies of Methanol, Methanethiol and Methylamine Dimer,” Journal of Molecular Structure: Theochem 594 (2002): 179–184, https://doi.org/10.1016/S0166-1280(02)00389-5.
- 64M. K. Tripathi and V. Ramanathan, “Conformational Stability and Structural Analysis of Methanethiol Clusters: A Revisit,” RSC Advances 11 (2021): 29207–29214, https://doi.org/10.1039/D1RA04900C.
- 65P. Svrčková, A. Pysanenko, J. Lengyel, et al., “Photodissociation Dynamics of Ethanethiol in Clusters: Complementary Information From Velocity Map Imaging, Mass Spectrometry and Calculations,” Physical Chemistry Chemical Physics 17 (2015): 25734–25741, https://doi.org/10.1039/C5CP00367A.
- 66V. Dyczmons, “Dimers of Ethanol,” Journal of Physical Chemistry A 108 (2004): 2080–2086, https://doi.org/10.1021/jp030930f.
- 67L. González, O. Mó, and M. Yáñez, “Density Functional Theory Study on Ethanol Dimers and Cyclic Ethanol Trimers,” Journal of Chemical Physics 111 (1999): 3855–3861, https://doi.org/10.1063/1.479689.
- 68J. P. I. Hearn, R. V. Cobley, and B. J. Howard, “High-Resolution Spectroscopy of Induced Chiral Dimers: A Study of the Dimers of Ethanol by Fourier Transform Microwave Spectroscopy,” Journal of Chemical Physics 123 (2005): 134324, https://doi.org/10.1063/1.2049267.
- 69D. Loru, I. Peña, and M. E. Sanz, “Ethanol Dimer: Observation of Three New Conformers by Broadband Rotational Spectroscopy,” Journal of Molecular Spectroscopy 335 (2017): 93–101, https://doi.org/10.1016/j.jms.2017.03.007.
- 70M. Umer, W. A. Kopp, and K. Leonhard, “Efficient Yet Accurate Approximations for Ab Initio Calculations of Alcohol Cluster Thermochemistry,” Journal of Chemical Physics 143 (2015): 214306, https://doi.org/10.1063/1.4936406.
- 71A. J. Barnes, H. E. Hallam, and D. Jones, “Vapour Phase Infrared Studies of Alcohols – I. Intramolecular Interactions and Self-Association,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 335 (1973): 97–111, https://doi.org/10.1098/rspa.1973.0116.
- 72L. A. Curtiss and M. Blander, “Thermodynamic Properties Of Gas-Phase Hydrogen-Bonded Complexes,” Chemical Reviews 88 (1988): 827–841, https://doi.org/10.1021/cr00088a002.
- 73T. H. Dunning, Jr., “Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen,” Journal of Chemical Physics 90 (1989): 1007–1023, https://doi.org/10.1063/1.456153.
- 74I. D. Mackie and G. A. DiLabio, “Approximations to Complete Basis Set-Extrapolated, Highly Correlated Non-Covalent Interaction Energies,” Journal of Chemical Physics 135 (2011): 134318, https://doi.org/10.1063/1.3643839.
- 75A. Bauzá, D. Quiñonero, P. M. Deyaì, and A. Frontera, “Is the Use of Diffuse Functions Essential for the Properly Description of Noncovalent Interactions Involving Anions?,” Journal of Physical Chemistry A 117 (2013): 2651–2655, https://doi.org/10.1021/jp312755z.
- 76D. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Hratch, Gaussian 16, Revision C.01, Gaussian 16, Revision C.01 (Wallingford, CT: Gaussian, 2016).
- 77A. Savin, R. Nesper, S. Wengert, and T. F. Fässler, “ELF: The Electron Localization Function,” Angewandte Chemie (International Ed. in English) 36 (1997): 1808–1832, https://doi.org/10.1002/ANIE.199718081.
- 78A. D. Becke and K. E. Edgecombe, “A Simple Measure of Electron Localization in Atomic and Molecular Systems,” Journal of Chemical Physics 92 (1990): 5397–5403, https://doi.org/10.1063/1.458517.
- 79R. Bader, Atoms in Molecules: A Quantum Theory, in Atoms in Molecules: A Quantum Theory (New York, NY: Oxford University Press, 1994).
- 80R. F. W. Bader, “A Quantum Theory of Molecular Structure and Its Applications,” Chemical Reviews 91 (1991): 893–928, https://doi.org/10.1021/cr00005a013.
- 81J. Contreras-García, R. A. Boto, F. Izquierdo-Ruiz, I. Reva, T. Woller, and M. Alonso, “A Benchmark for the Non-Covalent Interaction (NCI) Index Or…Is It Really All in the Geometry?,” Theoretical Chemistry Accounts 135 (2016): 242, https://doi.org/10.1007/s00214-016-1977-7.
- 82E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, and W. Yang, “Revealing Noncovalent Interactions,” Journal of the American Chemical Society 132 (2010): 6498–6506, https://doi.org/10.1021/ja100936w.
- 83M. Freindorf, E. Kraka, and D. Cremer, “A Comprehensive Analysis of Hydrogen Bond Interactions Based on Local Vibrational Modes,” International Journal of Quantum Chemistry 112 (2012): 3174–3187, https://doi.org/10.1002/qua.24118.
- 84D. Cremer and E. Kraka, “Chemical Bonds Without Bonding Electron Density — Does the Difference Electron-Density Analysis Suffice for a Description of the Chemical Bond?,” Angewandte Chemie (International Ed. in English) 23 (1984): 627–628, https://doi.org/10.1002/anie.198406271.
- 85Z. Konkoli and D. Cremer, “A New Way of Analyzing Vibrational Spectra. {III}. Characterization of Normal Vibrational Modes in Terms of Internal Vibrational Modes,” International Journal of Quantum Chemistry 67 (1998): 29–40, https://doi.org/10.1002/(SICI)1097-461X(1998)67:1<29::AID-QUA3>3.0.CO;2-0.
- 86Z. Konkoli and D. Cremer, “A New Way of Analyzing Vibrational Spectra. I. Derivation of Adiabatic Internal Modes,” International Journal of Quantum Chemistry 67 (1998): 1–9.
- 87Z. Konkoli, J. A. Larsson, and D. Cremer, “A New Way of Analyzing Vibrational Spectra. {II}. Comparison of Internal Mode Frequencies,” International Journal of Quantum Chemistry 67 (1998): 11–27, https://doi.org/10.1002/(sici)1097-461x(1998)67:1<11::aid-qua2>3.0.co;2-1.
- 88T. Lu and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33 (2012): 580–592, https://doi.org/10.1002/jcc.22885.
- 89B. Jeziorski, R. Moszynski, and K. Szalewicz, “Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of Van Der Waals Complexes,” Chemical Reviews 94 (1994): 1887–1930, https://doi.org/10.1021/cr00031a008.
- 90A. Vargas-Caamal, F. Ortiz-Chi, D. Moreno, A. Restrepo, G. Merino, and J. L. Cabellos, “The Rich and Complex Potential Energy Surface of the Ethanol Dimer,” Theoretical Chemistry Accounts 134 (2015): 16, https://doi.org/10.1007/s00214-015-1615-9.
- 91B. Wang, W. Jiang, X. Dai, Y. Gao, Z. Wang, and R.-Q. Zhang, “Molecular Orbital Analysis of the Hydrogen Bonded Water Dimer,” Scientific Reports 6 (2016): 22099, https://doi.org/10.1038/srep22099.
- 92N. P. Malomuzh, I. V. Zhyganiuk, and M. V. Timofeev, “Nature of H-Bonds in Water Vapor,” Journal of Molecular Liquids 242 (2017): 175–180, https://doi.org/10.1016/j.molliq.2017.06.127.
- 93W. Nakanishi, S. Hayashi, and K. Narahara, “Atoms-in-Molecules Dual Parameter Analysis of Weak to Strong Interactions: Behaviors of Electronic Energy Densities versus Laplacian of Electron Densities at Bond Critical Points,” Journal of Physical Chemistry A 112 (2008): 13593–13599, https://doi.org/10.1021/jp8054763.