A First-Principle Study Investigating the Half-Metallic and Mechanical Properties of Double Halide Perovskites Rb2OsX6 (X = cl, Br, and I) for Spintronic Applications
Corresponding Author
Mohamed Boubchir
Research Center in Industrial Technologies CRTI, Algiers, Algeria
Laboratoire de Modélisation et de Simulation en Sciences Des Matériaux, Sidi Bel Abbès, Algeria
Correspondence:
Mohamed Boubchir ([email protected])
Search for more papers by this authorZeyneb Bordjiba
Laboratoire de Physique Des Matériaux (L2PM), Guelma, Algeria
Search for more papers by this authorRabie Amraoui
Laboratoire de Physique Des Matériaux (L2PM), Guelma, Algeria
Search for more papers by this authorRachid Boubchir
Research Center in Industrial Technologies CRTI, Algiers, Algeria
Search for more papers by this authorHafid Aourag
Research Center in Industrial Technologies CRTI, Algiers, Algeria
Search for more papers by this authorCorresponding Author
Mohamed Boubchir
Research Center in Industrial Technologies CRTI, Algiers, Algeria
Laboratoire de Modélisation et de Simulation en Sciences Des Matériaux, Sidi Bel Abbès, Algeria
Correspondence:
Mohamed Boubchir ([email protected])
Search for more papers by this authorZeyneb Bordjiba
Laboratoire de Physique Des Matériaux (L2PM), Guelma, Algeria
Search for more papers by this authorRabie Amraoui
Laboratoire de Physique Des Matériaux (L2PM), Guelma, Algeria
Search for more papers by this authorRachid Boubchir
Research Center in Industrial Technologies CRTI, Algiers, Algeria
Search for more papers by this authorHafid Aourag
Research Center in Industrial Technologies CRTI, Algiers, Algeria
Search for more papers by this authorABSTRACT
In this work, we present a density functional calculation of the structural, electronic, and mechanical properties of cubic double halide perovskites Rb2OsX6 (X = Cl, Br, and I). Our results show that these compounds are stable in the ferromagnetic phase with lattice parameters, bulk modulus, and their first-pressure derivatives in good agreement with other available theoretical data. The negative values of cohesive energy and formation energy, along with the absence of negative or imaginary frequencies in the phonon spectrum, confirm the mechanical stability of all the compounds. The Curie temperature (Tc) is determined using a Heisenberg model in the mean-field approximation. We obtained a half-metallic character for all compounds, making them promising materials for spintronic applications. The magnetic properties indicate that the Os atoms in all compounds are responsible for the magnetism, while the positive exchange constants suggest a strong preference for ferromagnetic alignment. This indicates a stable ferromagnetic phase and potential applications in spintronics. The mechanical properties demonstrate that the compounds studied are isotropic and ductile.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1M. N. Baibich, J. M. Broto, A. Fert, et al., “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,” Physical Review Letters 61 (1988): 2472–2475, https://doi.org/10.1103/PhysRevLett.61.2472.
- 2G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced Megnetoresistance in Layered Magnetic Structures With Antiferromagnetic Interlayer Exchange,” Physical Review B 39 (1989): 4828–4830, https://doi.org/10.1103/PhysRevB.39.4828.
- 3M. Julliere, “Tunneling Between Ferromagnetic Films,” Physics Letters A 54 (1975): 225–226, https://doi.org/10.1016/0375-9601(75)90174-7.
- 4H. Ohno, “Making Nonmagnetic Semiconductors Ferromagnetic,” Science 281 (1998): 951–956, https://doi.org/10.1126/science.281.5379.951.
- 5A. Haury, A. Wasiela, A. Arnoult, et al., “Observation of a Ferromagnetic Transition Induced by Two Dimensional Hole Gas in Modulation Doped CdMnTe Quantum Wells,” Physical Review Letters 79 (1997): 511–514, https://doi.org/10.1103/PhysRevLett.79.511.
- 6G. A. Prinz, “Hybrid Ferromagnetic Semiconductor Structure,” Science 250 (1990): 1092–1097, https://doi.org/10.1126/science.250.4984.1092.
- 7S. A. Wolf, “Spintronics: A Spin-Based Electronics Vision for the Future,” Science 294 (2001): 1488–1495, https://doi.org/10.1126/science.1065389.
- 8A. Mourachkine, O. V. Yazyev, C. Ducati, and J.-P. Ansermet, “Template Nanowires for Spintronics Application:Nanomagnet Microwave Resonators Functioning in Zero Applied Magnetic Field,” Nano Letters 8 (2008): 3683–3687, https://doi.org/10.1021/nl801820h.
- 9A. El-Ghazaly, J. Gorchon, R. B. Wilson, A. Pattabi, and J. Bokor, “Progress Towards Ultrafast Spintronics Applications,” Journal of Magnetism and Magnetic Materials 502 (2020): 166478, https://doi.org/10.1016/j.jmmm.2020.166478.
- 10M. E. Flatte, “Spintronics,” IEEE Transactions on Electron Devices 54 (2007): 907–920, https://doi.org/10.1109/TED.2007.894376.
- 11I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and Applications,” Reviews of Modern Physics 76 (2004): 323–410, https://doi.org/10.1103/RevModPhys.76.323.
- 12Z. Bordjiba, A. Meddour, and C. Bourouis, “A Systematic Study of Structural, Magneto-Electronic and Thermodynamic Properties of Mg1−xCrxSe DMS Alloys in the Rock-Salt Phase for Spintronic Applications,” Journal of Electronic Materials 48 (2019): 3248–3260, https://doi.org/10.1007/s11664-019-07043-7.
- 13T. Cai, W. Shi, S. Hwang, et al., “Lead-Free Cs4CuSb2Cl12 Layered Double Perovskite Nanocrystals,” Journal of the American Chemical Society 142 (2020): 11927–11936, https://doi.org/10.1021/jacs.0c04919.
- 14S. Ahmad Dar, “ Osmium Containing Double Perovskite Ba 2 XOsO 6 (X = mg, Zn, cd): Important Candidates for Half-Metallic Ferromagnetic and Spintronic Applications,” in Perovskite Materials, Devices and Integration, vol. 6 (IntechOpen, 2020), 1–21, https://doi.org/10.5772/intechopen.88424.
10.5772/intechopen.88424 Google Scholar
- 15D. P. Rai, A. Shankar, M. P. Ghimire, and R. K. Sandeep, “The Electronic, Magnetic and Optical Properties of Double Perovskite A2FeReO6 (A = Sr, Ba) from First Principles Approach,” Computational Materials Science 101 (2015): 313–320, https://doi.org/10.1016/j.commatsci.2015.01.027.
- 16M. Rani, P. K. Kamlesh, S. Kumawat, et al., “Ab-Initio Calculations of Structural, Optoelectronic, Thermoelectric, and Thermodynamic Properties of Mixed-Halide Perovskites RbPbBr3−xIx (x = 0 to 3): Applicable in Renewable Energy Devices,” ECS Journal of Solid State Science and Technology 12 (2023): 083006, https://doi.org/10.1149/2162-8777/acec9c.
- 17S. Kumari, P. K. Kamlesh, L. Kumari, et al., “Progress in Theoretical Study of Lead-Free Halide Double Perovskite Na2AgSbX6 (X = F, Cl, Br, and I) Thermoelectric Materials,” Journal of Molecular Modeling 29 (2023): 195, https://doi.org/10.1007/s00894-023-05599-0.
- 18A. Dubey, N. Pandit, R. Singh, et al., “Lead-Free Alternative Cation (Ethylammonium) in Organometallic Perovskites for Thermoelectric Applications,” Journal of Molecular Modeling 30 (2024): 77, https://doi.org/10.1007/s00894-024-05867-7.
- 19U. Rani, P. K. Kamlesh, R. Agrawal, A. Shukla, and A. Singh Verma, “Emerging Study on Lead-Free Hybrid Double Perovskite (CH3NH3)2 AgInBr6: Potential Material for Energy Conversion between Heat and Electricity,” Energy Technology 10 (2022): 1–9, https://doi.org/10.1002/ente.202200002.
10.1002/ente.202200002 Google Scholar
- 20Q. Sun, W.-J. Yin, and S.-H. Wei, “Searching for Stable Perovskite Solar Cell Materials Using Materials Genome Techniques and High-Throughput Calculations,” Journal of Materials Chemistry C 8 (2020): 12012–12035, https://doi.org/10.1039/D0TC02231D.
- 21M. R. Linaburg, E. T. McClure, J. D. Majher, and P. M. Woodward, “Cs1−xRbxPbCl3 and Cs1−xRb xPbBr3 Solid Solutions: Understanding Octahedral Tilting in Lead Halide Perovskites,” Chemistry of Materials 29 (2017): 3507–3514, https://doi.org/10.1021/acs.chemmater.6b05372.
- 22M. Tsuyama and S. Suzuki, “First-Principles Study on Electronic and Optical Properties of pb-Free Halide Perovskites Cs2TiX6(X= Br, I) in Comparison With CH3NH3PbX3(X= Br, I),” Journal of the Physical Society of Japan 88 (2019): 104802, https://doi.org/10.7566/JPSJ.88.104802.
- 23A. A. Dotsenko, V. I. Vovna, V. V. Korochentsev, et al., “Halide Perovskite-Derived Compounds Rb2TeX6 (X = Cl, Br, and I): Electronic Structure of the Ground and First Excited States,” Inorganic Chemistry 58 (2019): 6796–6803, https://doi.org/10.1021/acs.inorgchem.9b00250.
- 24T. Zhang, Z. Cai, and S. Chen, “Chemical Trends in the Thermodynamic Stability and Band Gaps of 980 Halide Double Perovskites: A High-Throughput First-Principles Study,” ACS Applied Materials & Interfaces 12 (2020): 20680–20690, https://doi.org/10.1021/acsami.0c03622.
- 25D. Han, T. Zhang, M. Huang, D. Sun, M.-H. Du, and S. Chen, “Predicting the Thermodynamic Stability of Double-Perovskite Halides from Density Functional Theory,” APL Materials 6 (2018): 084902, https://doi.org/10.1063/1.5027414.
- 26Z. Li, Q. Xu, Q. Sun, Z. Hou, and W.-J. Yin, “Thermodynamic Stability Landscape of Halide Double Perovskites via High-Throughput Computing and Machine Learning,” Advanced Functional Materials 29 (2019): 1807280, https://doi.org/10.1002/adfm.201807280.
- 27R. D. Shannon, “Revised Effective Ionic Radsii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallographica Section A: Foundations and Advances 32 (1976): 751–767, https://doi.org/10.1107/S0567739476001551.
- 28H. D. B. Jenkins and K. F. Pratt, “Lattice Energies and Thermochemistry of Hexahalometallate(Iv) Complexes, A2MX6, Which Possess the Antifluorite Structure,” Advances in Inorganic Chemistry and Radiochemistry 22 (1979): 1–111.
- 29G. Thiele, C. Mrozek, D. Kämmerer, and K. Wittmann, “On Hexaiodoplatinates(IV) M2 PtI6 (M = K, Rb, Cs, NH4, Tl)-Preparation, Properties and Structural Data,” Zeitschrift für Naturforschung Part B 38 (1983): 905–910, https://doi.org/10.1515/znb-1983-0802.
- 30K. Rössler and J. Winter, “Influence of d-Electron Configuration on Phase Transitions in A2MX6 (Hexahalometallates IV),” Chemical Physics Letters 46 (1977): 566–570, https://doi.org/10.1016/0009-2614(77)80653-2.
- 31P. Blaha, K. Schwarz, G. K. H. Madsen, and D. Kvasnicka, “ WIEN2k, an Augmented Plane Wave 1 Local Orbitals Programm for Calculating Crystal Properties,” 1 (2021).
- 32P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Physics Review 136 (1964): B864–B871, https://doi.org/10.1103/PhysRev.136.B864.
10.1103/PhysRev.136.B864 Google Scholar
- 33W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physics Review 140 (1965): A1133–A1138, https://doi.org/10.1103/PhysRev.140.A1133.
10.1103/PhysRev.140.A1133 Google Scholar
- 34J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters 77 (1996): 3865–3868, https://doi.org/10.1103/PhysRevLett.77.3865.
- 35F. Tran and P. Blaha, “Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential,” Physical Review Letters 102 (2009): 226401, https://doi.org/10.1103/PhysRevLett.102.226401.
- 36A. Togo and I. Tanaka, “First Principles Phonon Calculations in Materials Science,” Scripta Materialia 108 (2015): 1–5, https://doi.org/10.1016/j.scriptamat.2015.07.021.
- 37S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and Related Crystal Properties From Density-Functional Perturbation Theory,” Reviews of Modern Physics 73 (2001): 515–562, https://doi.org/10.1103/RevModPhys.73.515.
- 38X. Gonze and J.-P. Vigneron, “Density-Functional Approach to Nonlinear-Response Coefficients of Solids,” Physical Review B 39 (1989): 13120–13128, https://doi.org/10.1103/PhysRevB.39.13120.
- 39P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, “Ab Initio Calculation of Phonon Dispersions in Semiconductors,” Physical Review B 43 (1991): 7231–7242, https://doi.org/10.1103/PhysRevB.43.7231.
- 40F. Birch, “Finite Elastic Strain of Cubic Crystals,” Physics Review 71 (1947): 809–824, https://doi.org/10.1103/PhysRev.71.809.
- 41F. D. Murnaghan, “The Compressibility of Media Under Extreme Pressures,” Proceedings of the National Academy of Sciences 30 (1944): 244–247, https://doi.org/10.1073/pnas.30.9.244.
- 42W. Brendel, T. Samartzis, C. Brendel, and B. Krebs, “TG and DTA Investigations on Hexaiodometallates,” Thermochimica Acta 83 (1985): 167–172, https://doi.org/10.1016/0040-6031(85)85808-1.
- 43M. Boubchir, R. Boubchir, and H. Aourag, “The use of Principal Component Analysis for the Prediction of Double Halide Perovskite A2BX6,” Journal of Multiscale Modeling 12 (2021): 2150004, https://doi.org/10.1142/S1756973721500049.
- 44G. M. Mustafa, M. Hassan, N. M. Aloufi, et al., “Half Metallic Ferroamgnetism, and Transport Properties of Vacancy Ordered Double Perovskites Rb2(Os/Ir)X6 (X = Cl, Br) for Spintronic Applications,” Ceramics International 48 (2022): 23460–23467, https://doi.org/10.1016/j.ceramint.2022.04.341.
- 45R. Ullah, M. Faizan, and S. H. Khan, “DFT Study of the Half-Metallic Variant Perovskites A2OsX6 (A = Rb/Cs; X = Cl/Br) for Spintronic and Thermoelectric Applications,” International Journal of Quantum Chemistry 124 (2024): 1–15, https://doi.org/10.1002/qua.27370.
- 46J. Bai, J. M. Raulot, Y. D. Zhang, C. Esling, X. Zhao, and L. Zuo, “Crystallographic, Magnetic, and Electronic Structures of Ferromagnetic Shape Memory Alloys Ni2XGa (X = Mn, Fe, Co) from First-Principles Calculations,” Journal of Applied Physics 109 (2011): 014908, https://doi.org/10.1063/1.3524488.
- 47J. Bai, J. M. Raulot, Y. D. Zhang, C. Esling, X. Zhao, and L. Zuo, “Defect Formation Energy and Magnetic Structure of Shape Memory Alloys Ni–X–Ga (X = Mn, Fe, Co) by First Principle Calculation,” Journal of Applied Physics 108 (2010): 064904, https://doi.org/10.1063/1.3463391.
- 48S. M. Alay-e-Abbas, K. M. Wong, N. A. Noor, A. Shaukat, and Y. Lei, “An Ab-Initio Study of the Structural, Electronic and Magnetic Properties of Half-Metallic Ferromagnetism in Cr-Doped BeSe and BeTe,” Solid State Sciences 14 (2012): 1525–1535, https://doi.org/10.1016/j.solidstatesciences.2012.08.020.
- 49R. Gaudoin, W. M. C. Foulkes, and G. Rajagopal, “Ab Initio Calculations of the Cohesive Energy and the Bulk Modulus of Aluminium,” Journal of Physics: Condensed Matter (2002): 8787–8793, https://doi.org/10.1088/0953-8984/14/38/303.
- 50J. Li, X. Xu, Y. Zhou, M. Zhang, and X. Luo, “First-Principles Investigation on the Electronic and Magnetic Properties of Cubic Be0.75Mn0.25X (X = S, Se, Te),” Journal of Alloys and Compounds 575 (2013): 190–197, https://doi.org/10.1016/j.jallcom.2013.04.096.
- 51S. M. Hosseini, T. Movlarooy, and A. Kompany, “First-Principle Calculations of the Cohesive Energy and the Electronic Properties of PbTiO3,” Physica B: Condensed Matter 391 (2007): 316–321, https://doi.org/10.1016/j.physb.2006.10.013.
- 52V. M. Goldschmidt, “Die Gesetze der Krystallochemie,” Naturwissenschaften 14 (1926): 477–485, https://doi.org/10.1007/BF01507527.
- 53W. H. Zachariasen, “A Set of Empirical Crystal Radii for Ions with Inert Gas Configuration,” Zeitschrift für Kristallographie - Crystalline Materials 80 (1931): 137–153, https://doi.org/10.1524/zkri.1931.80.1.137.
- 54L. Pauling, “The Sizes of Ions and the Structure of Ionic Crystals,” Journal of the American Chemical Society 49 (1927): 765–790, https://doi.org/10.1021/ja01402a019.
- 55L. H. Ahrens, “The Use of Ionization Potentials Part 1. Ionic Radii of the Elements,” Geochimica et Cosmochimica Acta 2 (1952): 155–169, https://doi.org/10.1016/0016-7037(52)90004-5.
- 56R. D. Shannon and C. T. Prewitt, “Effective Ionic Radii in Oxides and Fluorides,” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 25 (1969): 925–946, https://doi.org/10.1107/S0567740869003220.
- 57R. D. Shannon and C. T. Prewitt, “Effective Ionic Radii and Crystal Chemistry,” Journal of Inorganic and Nuclear Chemistry 32 (1970): 1427–1441, https://doi.org/10.1016/0022-1902(70)80629-7.
- 58G. Y. Gao, K. L. Yao, E. Şaşıoğlu, L. M. Sandratskii, Z. L. Liu, and J. L. Jiang, “Half-Metallic Ferromagnetism in Zinc-Blende CaC, SrC, and BaC from First Principles,” Physical Review B 75 (2007): 174442, https://doi.org/10.1103/PhysRevB.75.174442.
- 59S. A. Dar, V. Srivastava, U. K. Sakalle, S. Ahmad Khandy, and D. C. Gupta, “A DFT Study on Structural, Electronic Mechanical and Thermodynamic Properties of 5f-Electron System BaAmO3,” Journal of Superconductivity and Novel Magnetism 31 (2018): 141–149, https://doi.org/10.1007/s10948-017-4181-7.
- 60S. A. Dar, V. Srivastava, and U. K. Sakalle, “A First-Principles Calculation on Structural, Electronic, Magnetic, Mechanical, and Thermodynamic Properties of SrAmO3,” Journal of Superconductivity and Novel Magnetism 30 (2017): 3055–3063, https://doi.org/10.1007/s10948-017-4155-9.
- 61J. A. Gaj, R. Planel, and G. Fishman, “Relation of Magneto-Optical Properties of Free Excitons to spin Alignment of Mn2+ Ions in Cd1−xMnxTe,” Solid State Communications 88 (1993): 927–930, https://doi.org/10.1016/0038-1098(93)90271-N.
10.1016/0038-1098(93)90271-N Google Scholar
- 62S. Sanvito, P. Ordejón, and N. A. Hill, “First-Principles Study of the Origin and Nature of Ferromagnetism in Ga1−xMnxAs,” Physical Review B 63 (2001): 165206, https://doi.org/10.1103/PhysRevB.63.165206.
- 63Z. Bordjiba, A. Meddour, and C. Bourouis, “Ab Initio Theoretical Prediction of Structural, Electronic, and Magnetic Properties in the 3d (Mn)-Doped Zinc-Blende MgSe: A DFT-mBJ Approach,” Journal of Superconductivity and Novel Magnetism 31 (2018): 2261–2270, https://doi.org/10.1007/s10948-017-4495-5.
- 64W. Elaggoune, A. Meddour, C. Bourouis, M. H. Gous, and Z. Bordjiba, “Influence of 3d-Fe Substitution on Structural, Mechanical, Electronic, and Magnetic Properties in Rock-Salt SrS: Insights from the First-Principles Study,” Solid State Communications 361 (2023): 115060, https://doi.org/10.1016/j.ssc.2022.115060.
- 65J. Wang, S. Yip, S. R. Phillpot, and D. Wolf, “Crystal Instabilities at Finite Strain,” Physical Review Letters 71 (1993): 4182–4185, https://doi.org/10.1103/PhysRevLett.71.4182.
- 66C. G. Sammis, “Thermodynamics of Crystals,” Acta Crystallographica Section A 29 (1973): 582–583, https://doi.org/10.1107/S056773947300149X.
10.1107/S056773947300149X Google Scholar
- 67M. Gasperin, “CaTaO3: Un Nouveau Composé du Type Pérovskite,” Acta Crystallographica 11 (1958): 739, https://doi.org/10.1107/S0365110X58001961.
- 68I. Waller, “Dynamical Theory of Crystal Latticesby M. Born and K. Huang,” Acta Crystallographica 9 (1956): 837–838, https://doi.org/10.1107/S0365110X56002370.
10.1107/S0365110X56002370 Google Scholar
- 69R. Hill, “The Elastic Behaviour of a Crystalline Aggregate,” Proceedings of the Physical Society Section A 65 (1952): 349–354, https://doi.org/10.1088/0370-1298/65/5/307.
- 70W. Voigt, “Ueber Die Beziehung Zwischen Den Beiden Elasticitätsconstanten Isotroper Körper,” Annalen der Physik 274 (1889): 573–587, https://doi.org/10.1002/andp.18892741206.
10.1002/andp.18892741206 Google Scholar
- 71A. Reuss, “Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle,” Zeitschrift für Angewandte Mathematik und Mechanik 9 (1929): 49–58, https://doi.org/10.1002/zamm.19290090104.
- 72V. Tvergaard and J. W. Hutchinson, “Microcracking in Ceramics Induced by Thermal Expansion or Elastic Anisotropy,” Journal of the American Ceramic Society 71 (1988): 157–166, https://doi.org/10.1111/j.1151-2916.1988.tb05022.x.
- 73M. Boubchir, R. Boubchir, and H. Aourag, “The Principal Component Analysis as a tool for Predicting the Mechanical Properties of Perovskite and Inverse Perovskite,” Chemical Physics Letters 798 (2022): 139615, https://doi.org/10.1016/j.cplett.2022.139615.
- 74J. Haines, J. Léger, and G. Bocquillon, “Synthesis and Design of Superhard Materials,” Annual Review of Materials Research 31 (2001): 1–23, https://doi.org/10.1146/annurev.matsci.31.1.1.
- 75S. F. Pugh, “Relations Between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals,” Dublin Philosophical Magazine and Journal of Science 45 (1954): 823–843, https://doi.org/10.1080/14786440808520496.
- 76M. Fine, L. Brown, and H. Marcus, “Elastic Constants Versus Melting Temperature in Metals,” Scripta Metallurgica 18 (1984): 951–956, https://doi.org/10.1016/0036-9748(84)90267-9.
- 77E. Güler and M. Güler, “Elastic and Mechanical Properties of Cubic Diamond Under Pressure,” Chinese Journal de Physique 53 (2015): 040807, https://doi.org/10.6122/CJP.20141230.
- 78G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” Journal of Applied Physics 39 (1968): 3597–3639, https://doi.org/10.1063/1.1656831.
- 79L. Kleinman, “Deformation Potentials in Silicon. I. Uniaxial Strain,” Physics Review 128 (1962): 2614–2621, https://doi.org/10.1103/PhysRev.128.2614.