Exploring the Possibility of a Planar Tetracoordinate Boron in BXY3 (X = B, Al, Ga; Y = C, Si, Ge) Clusters: A Theoretical Study
Bhrigu Chakraborty
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
Search for more papers by this authorCorresponding Author
Pratim Kumar Chattaraj
Department of Chemistry, Birla Institute of Technology Mesra, Ranchi, Jharkhand, India
Correspondence:
Pratim Kumar Chattaraj ([email protected])
Search for more papers by this authorBhrigu Chakraborty
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
Search for more papers by this authorCorresponding Author
Pratim Kumar Chattaraj
Department of Chemistry, Birla Institute of Technology Mesra, Ranchi, Jharkhand, India
Correspondence:
Pratim Kumar Chattaraj ([email protected])
Search for more papers by this authorFunding: P.K.C. thanks Department of Science & Technology (DST), New Delhi for the J. C. Bose National Fellowship, grant number SR/S2/JCB-09/2009. B.C. thanks the Ministry of Education, Government of India for the PMRF fellowship.
ABSTRACT
In this study, we investigated the potential energy surface of BXY3 (X = B, Al, Ga; Y = C, Si, Ge) clusters employing a few global optimization techniques. Remarkably, the global minimum structure obtained for most of the cases revealed a planar tetracoordinate boron atom, shedding light on the inherent stability of this motif. A comparative analysis of the performance of the different global optimization techniques employed is presented, offering insights into their efficacy. Additionally, the overall stability of the obtained global minimum structures is thoroughly examined through Atom-centered Density Matrix Propagation (ADMP) simulations spanning 20 ps at temperatures 300 and 500 K. The aromaticity of the respective clusters is also assessed via Nucleus Independent Chemical Shift (NICS) and Isochemical Shielding Surface (ICSS) calculations, providing valuable information regarding their electronic structure and stability. This comprehensive theoretical investigation contributes to our understanding of the structural properties of these clusters, with implications for their potential applications in various fields of chemistry.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
jcc27525-sup-0001-Supinfo01.docxWord 2007 document , 3.1 MB |
Data S1. |
jcc27525-sup-0002-Supinfo02.docxWord 2007 document , 3 MB |
Data S2. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. H. Hoff, “Sur les formules de structure dans l'espace,” Archives Néerlandaises des Sciences Exactes et Naturelles 9 (1875): 445.
- 2J. A. Le Bel, “On the Relations which Exist Between the Atomic Formulas of Organic Compounds and the Rotatory Power of Their Solutions,” Bulletin de la Société Chimique de France 22 (1874): 337.
- 3H. J. Monkhorst, “Activation Energy for Interconversion of Enantiomers Containing an Asymmetric Carbon Atom Without Breaking Bonds,” Chemical Communications (London) 11 (1968): 1111.
10.1039/c19680001111 Google Scholar
- 4R. Hoffmann, R. W. Alder, and C. F. Wilcox, Jr., “Planar Tetracoordinate Carbon,” Journal of the American Chemical Society 92 (1970): 4992–4993.
- 5J. B. Collins, J. D. Dill, E. D. Jemmis, et al., “Stabilization of Planar Tetracoordinate Carbon,” Journal of the American Chemical Society 98 (1976): 5419–5427.
- 6G. Merino, M. A. Méndez-Rojas, H. I. Beltrán, C. Corminboeuf, T. Heine, and A. Vela, “Theoretical Analysis of the Smallest Carbon Cluster Containing a Planar Tetracoordinate Carbon,” Journal of the American Chemical Society 126 (2004): 16160–16169.
- 7Z. Cui, M. Contreras, Y. Ding, and G. Merino, “Planar Tetracoordinate Carbon Versus Planar Tetracoordinate Boron: The Case of CB4 and Its Cation,” Journal of the American Chemical Society 133 (2011): 13228–13231.
- 8L. Yang, E. Ganz, Z. Chen, Z. Wang, and P. v. R. Schleyer, “Four Decades of the Chemistry of Planar Hypercoordinate Compounds,” Angewandte Chemie International Edition 54 (2015): 9468–9501.
- 9Z. Cui, Y. Ding, J. L. Cabellos, et al., “Planar Tetracoordinate Carbons With a Double Bond in CAl3E Clusters,” Physical Chemistry Chemical Physics 17 (2015): 8769–8775.
- 10P. Das, S. Pan, and P. K. Chattaraj, “ Planar Hypercoordinate Carbon,” in Atomic Clusters With Unusual Structure, Bonding and Reactivity (Amsterdam: Elsevier, 2023), 357.
10.1016/B978-0-12-822943-9.00021-8 Google Scholar
- 11P. Das and P. K. Chattaraj, “In Silico Studies on Selected Neutral Molecules, CGa2Ge2, CAlGaGe2, and CSiGa2Ge Containing Planar Tetracoordinate Carbon,” Atoms 9 (2021): 65.
- 12P. Das and P. K. Chattaraj, “CSiGaAl2-/0 and CGeGaAl2-/0 having Planar Tetracoordinate Carbon Atoms in Their Global Minimum Energy Structures,” Journal of Computational Chemistry 43 (2022): 894–905.
- 13P. Das, M. Khatun, A. Anoop, and P. K. Chattaraj, “CSinGe4-n2+ (n = 1–3): Prospective Systems Containing Planar Tetracoordinate Carbon (ptC),” Physical Chemistry Chemical Physics 24 (2022): 16701–16711.
- 14X. Li, L.-S. Wang, A. I. Boldyrev, and J. Simons, “Tetracoordinated Planar Carbon in the Al4C-Anion. A Combined Photoelectron Spectroscopy and Ab Initio Study,” Journal of the American Chemical Society 121 (1999): 6033–6038.
- 15A. I. Boldyrev and J. Simons, “Tetracoordinated Planar Carbon in Pentaatomic Molecules,” Journal of the American Chemical Society 120 (1998): 7967–7972.
- 16D. Röttger and G. Erker, “Compounds Containing Planar-Tetracoordinate Carbon,” Angewandte Chemie International Edition in English 36 (1997): 812–827.
- 17G. Castillo-Toraya, M. Orozco-Ic, E. Dzib, et al., “Planar Tetracoordinate Fluorine Atoms,” Chemical Science 12 (2021): 6699–6704.
- 18M. Wang, C. Chen, S. Pan, and Z. Cui, “Planar Hexacoordinate Gallium,” Chemical Science 12 (2021): 15067–15076.
- 19A. J. Kalita, K. Sarmah, F. Yashmin, et al., “σ-Aromaticity in Planar Pentacoordinate Aluminium and Gallium Clusters,” Scientific Reports 12 (2022): 10041.
- 20W. Feng, C. Zhu, X. Liu, et al., “A BPt4S4 cluster: A Planar Tetracoordinate Boron System With Three Charges all at Their Global Energy Minima,” New Journal of Chemistry 44 (2020): 767–772.
- 21S. Li, C. Miao, and G. Ren, “D5hCu5H5X: Pentagonal Hydrocopper Cu5H5 Containing Pentacoordinate Planar Nonmetal Centers (X = B, C, N, O),” European Journal of Inorganic Chemistry 2004 (2004): 2232–2234.
- 22H.-L. Yu, R.-L. Sang, and Y.-Y. Wu, “Structure and Aromaticity of B6H5+ Cation: A Novel Borhydride System Containing Planar Pentacoordinated Boron,” Journal of Physical Chemistry A 113 (2009): 3382–3386.
- 23M. Khatun, S. Roy, S. Giri, S. S. R. Ch, A. Anoop, and V. S. Thimmakondu, “BAl4Mg−/0/+: Global Minima With a Planar Tetracoordinate or Hypercoordinate Boron Atom,” Atoms 9 (2021): 89.
- 24T. N. Gribanova, R. M. Minyaev, and V. I. Minkin, “Planar Hexacoordinated Boron in Organoboron Compounds: An Ab Initio Study,” Mendeleev Communications 11 (2001): 169–170.
- 25P. Das, S. G. Patra, and P. K. Chattaraj, “CB6Al0/+: Planar Hexacoordinate Boron (phB) in the Global Minimum Structure,” Physical Chemistry Chemical Physics 24 (2022): 22634–22644.
- 26H. Zhai, A. N. Alexandrova, K. A. Birch, A. I. Boldyrev, and L. Wang, “Hepta- and Octacoordinate Boron in Molecular Wheels of Eight- and Nine-Atom Boron Clusters: Observation and Confirmation,” Angewandte Chemie International Edition 42 (2003): 6004–6008.
- 27D. J. Wales and J. P. K. Doye, “Stationary Points and Dynamics in High-Dimensional Systems,” Journal of Chemical Physics 119 (2003): 12409–12416.
- 28S. Heiles and R. L. Johnston, “Global Optimization of Clusters Using Electronic Structure Methods,” International Journal of Quantum Chemistry 113 (2013): 2091–2109.
- 29F. H. Stillinger and T. A. Weber, “Hidden Structure in Liquids,” Physical Review A 25 (1982): 978–989.
- 30S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science 1983, no. 220 (1979): 671–680.
- 31L. T. Wille, “Searching Potential Energy Surfaces by Simulated Annealing,” Nature 324 (1986): 46–48.
- 32J. H. Holland and J. S. Reitman, Pattern-Directed Inference Systems (New York: Academic Press, 1978), 313.
10.1016/B978-0-12-737550-2.50020-8 Google Scholar
- 33N. L. Abraham and M. I. J. Probert, “A Periodic Genetic Algorithm With Real-Space Representation for Crystal Structure and Polymorph Prediction,” Physical Review B 73 (2006): 224104.
- 34S. M. Woodley, P. D. Battle, J. D. Gale, C. Richard, and A. Catlow, “The Prediction of Inorganic Crystal Structures Using a Genetic Algorithm and Energy Minimisation,” Physical Chemistry Chemical Physics 1 (1999): 2535–2542.
- 35R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces,” Journal of Global Optimization 11 (1997): 341–359.
- 36W.-H. Yang, F.-Q. Yu, R. Huang, G.-F. Shao, T.-D. Liu, and Y.-H. Wen, “Structural Determination and Hierarchical Evolution of Transition Metal Clusters Based on an Improved Self-Adaptive Differential Evolution With Neighborhood Search Algorithm,” Journal of Chemical Information and Modeling 63 (2023): 6727–6739.
- 37M. López-Ibáñez, Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation (New York, NY: ACM, 2010), 2353–2384.
10.1145/1830761.1830899 Google Scholar
- 38J. A. Hiss, M. Reutlinger, C. P. Koch, et al., “Combinatorial Chemistry by Ant Colony Optimization,” Future Medicinal Chemistry 6 (2014): 267–280.
- 39J. Zhang and M. Dolg, “ABCluster: The Artificial Bee Colony Algorithm for Cluster Global Optimization,” Physical Chemistry Chemical Physics 17 (2015): 24173–24181.
- 40B. Yuce, M. Packianather, E. Mastrocinque, D. Pham, and A. Lambiase, “Honey Bees Inspired Optimization Method: The Bees Algorithm,” Insects 4 (2013): 646–662.
- 41D. T. Pham, A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim, and M. Zaidi, Intelligent Production Machines and Systems (Cardiff, UK: Elsevier, 2006), 454–459.
10.1016/B978-008045157-2/50081-X Google Scholar
- 42X.-S. Yang, Stochastic Algorithms: Foundations and Applications, eds. T. Watanabe Osamu and Zeugmann (Berlin, Heidelberg: Springer, 2009), 169–178.
10.1007/978-3-642-04944-6_14 Google Scholar
- 43A. Mitra, G. Jana, P. Agrawal, S. Sural, and P. K. Chattaraj, “Integrating Firefly Algorithm With Density Functional Theory for Global Optimization of Al42− Clusters,” Theoretical Chemistry Accounts 139 (2020): 32.
- 44J. Kennedy and R. Eberhart, Proceedings of ICNN'95—International Conference on Neural Networks (Perth, WA: IEEE, 1995), 1942–1948.
10.1109/ICNN.1995.488968 Google Scholar
- 45J. Kennedy, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC'97) (Indianapolis, IN: IEEE, 1997), 303–308.
10.1109/ICEC.1997.592326 Google Scholar
- 46B. Y. Qu, J. J. Liang, and P. N. Suganthan, “Niching Particle Swarm Optimization With Local Search for Multi-Modal Optimization,” Information Sciences 197 (2012): 131–143.
- 47A. Mitra, G. Jana, R. Pal, P. Gaikwad, S. Sural, and P. K. Chattaraj, “Determination of Stable Structure of a Cluster Using Convolutional Neural Network and Particle Swarm Optimization,” Theoretical Chemistry Accounts 140 (2021): 30.
- 48C. J. Pickard and R. J. Needs, “Structure of Phase III of Solid Hydrogen,” Nature Physics 3 (2007): 473–476.
- 49C. J. Pickard and R. J. Needs, “Highly Compressed Ammonia Forms an Ionic Crystal,” Nature Materials 7 (2008): 775–779.
- 50D. J. Wales and J. P. K. Doye, “Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard–Jones Clusters Containing up to 110 Atoms,” Journal of Physical Chemistry A 101 (1997): 5111–5116.
- 51A. Banerjee, D. Jasrasaria, S. P. Niblett, and D. J. Wales, “Crystal Structure Prediction for Benzene Using Basin-Hopping Global Optimization,” Journal of Physical Chemistry A 125 (2021): 3776–3784.
- 52R. Martoňák, A. Laio, and M. Parrinello, “Predicting Crystal Structures: The Parrinello–Rahman Method Revisited,” Physical Review Letters 90 (2003): 075503.
- 53R. Martoňák, A. Laio, M. Bernasconi, et al., “Simulation of Structural Phase Transitions by Metadynamics,” Zeitschrift fur Kristallographie—Crystalline Materials 220 (2005): 489–498.
- 54R. Pal, P. Das, and P. K. Chattaraj, “Global Optimization: A Soft Computing Perspective,” Journal of Physical Chemistry Letters 14 (2023): 3468–3482.
- 55G. Jana, A. Mitra, S. Pan, S. Sural, and P. K. Chattaraj, “Modified Particle Swarm Optimization Algorithms for the Generation of Stable Structures of Carbon Clusters, Cn (n = 3–6, 10),” Frontiers in Chemistry 7 (2019): 485.
- 56A. K. Das and D. K. Pratihar, “Bonobo Optimizer (BO): An Intelligent Heuristic With Self-Adjusting Parameters Over Continuous Spaces and Its Applications to Engineering Problems,” Applied Intelligence 52 (2022): 2942–2974.
- 57A. K. Das, A. K. Nikum, S. V. Krishnan, and D. K. Pratihar, “Multi-Objective Bonobo Optimizer (MOBO): An Intelligent Heuristic for Multi-Criteria Optimization,” Knowledge and Information Systems 62 (2020): 4407–4444.
- 58A. K. Das, S. Sahoo, and D. K. Pratihar, “An Improved Design of Knee Orthosis Using Self-Adaptive Bonobo Optimizer (SaBO),” Journal of Intelligent and Robotic Systems 107 (2023): 8.
- 59B. Chakraborty, R. Pal, D. K. Pratihar, and P. K. Chattaraj, “Bonobo Optimizer: A New Tool Toward the Global Optimization of Small Atomic Clusters,” Journal of Physical Chemistry A 128 (2024): 3864–3873.
- 60H. B. Schlegel, S. S. Iyengar, X. Li, et al., “Ab Initio Molecular Dynamics: Propagating the Density Matrix With Gaussian Orbitals. III. Comparison With Born–Oppenheimer Dynamics,” Journal of Chemical Physics 117 (2002): 8694–8704.
- 61H. B. Schlegel, J. M. Millam, S. S. Iyengar, et al., “Ab Initio Molecular Dynamics: Propagating the Density Matrix With Gaussian Orbitals,” Journal of Chemical Physics 114 (2001): 9758–9763.
- 62Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, and P. v. R. Schleyer, “Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion,” Chemical Reviews 105 (2005): 3842–3888.
- 63T. Heine, P. v. R. Schleyer, C. Corminboeuf, G. Seifert, R. Reviakine, and J. Weber, “Analysis of Aromatic Delocalization: Individual Molecular Orbital Contributions to Nucleus-Independent Chemical Shifts,” Journal of Physical Chemistry A 107 (2003): 6470–6475.
- 64Z. Liu, T. Lu, and Q. Chen, “An Sp-Hybridized All-Carboatomic Ring, Cyclo[18]Carbon: Bonding Character, Electron Delocalization, and Aromaticity,” Carbon 165 (2020): 468–475.
- 65S. Klod and E. Kleinpeter, “Ab Initio Calculation of the Anisotropy Effect of Multiple Bonds and the Ring Current Effect of Arenes—Application in Conformational and Configurational Analysis,” Journal of the Chemical Society, Perkin Transactions 2 10 (2001): 1893.
- 66A. D. Becke, “Density-Functional Exchange-Energy Approximation With Correct Asymptotic Behavior,” Physical Review A 38 (1988): 3098–3100.
- 67C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron Density,” Physical Review B 37 (1988): 785–789.
- 68A. D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics 98 (1993): 5648–5652.
- 69K. B. Wiberg, “Ab Initio Molecular Orbital Theory by W. J. Hehre, L. Radom, P. V. R. Schleyer, and J. A. Pople, John Wiley, New York, 548 pp. Price: $79.95 (1986),” Journal of Computational Chemistry 7 (1986): 379.
10.1002/jcc.540070314 Google Scholar
- 70P. C. Hariharan and J. A. Pople, “The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies,” Theoretica Chimica Acta 28 (1973): 213–222.
- 71R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, “Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions,” Journal of Chemical Physics 72 (1980): 650–654.
- 72M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 16, Revision C.01 (Wallingford, CT: Gaussian Inc, 2016).
- 73G. E. Scuseria and H. F. Schaefer, “Is Coupled Cluster Singles and Doubles (CCSD) More Computationally Intensive Than Quadratic Configuration Interaction (QCISD)?,” Journal of Chemical Physics 90 (1989): 3700–3703.
- 74F. Weigend, “Accurate Coulomb-Fitting Basis Sets for H to Rn,” Physical Chemistry Chemical Physics 8 (2006): 1057–1065.
- 75R. A. Kendall, T. H. Dunning, and R. J. Harrison, “Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions,” Journal of Chemical Physics 96 (1992): 6796–6806.
- 76T. H. Dunning, “Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen,” Journal of Chemical Physics 90 (1989): 1007–1023.
- 77J. D. Watts, J. Gauss, and R. J. Bartlett, “Coupled-Cluster Methods With Noniterative Triple Excitations for Restricted Open-Shell Hartree–Fock and Other General Single Determinant Reference Functions. Energies and Analytical Gradients,” Journal of Chemical Physics 98 (1993): 8718–8733.
- 78A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular Interactions From a Natural Bond Orbital, Donor–Acceptor Viewpoint,” Chemical Reviews 88 (1988): 899–926.
- 79C. Moller and M. S. Plesset, “Note on an Approximation Treatment for Many-Electron Systems,” Physics Review 46 (1934): 618.
- 80D. Cremer, “Møller–Plesset Perturbation Theory: From Small Molecule Methods to Methods for Thousands of Atoms,” WIREs Computational Molecular Science 1 (2011): 509–530.
- 81E. D. Glendening, C. R. Landis, and F. Weinhold, “Erratum: NBO 6.0: Natural Bond Orbital Analysis Program,” Journal of Computational Chemistry 34 (2013): 2134.
- 82P. Das and P. K. Chattaraj, “BSinGe4−n+ (n = 0−2): Prospective Systems Containing Planar Tetracoordinate Boron (ptB),” Journal of Chemical Sciences 135 (2022): 1.
- 83K. B. Wiberg, “Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane,” Tetrahedron 24 (1968): 1083–1096.
- 84I. Mayer, “Charge, Bond Order and Valence in the AB Initio SCF Theory,” Chemical Physics Letters 97 (1983): 270–274.
- 85D. Y. Zubarev and A. I. Boldyrev, “Developing Paradigms of Chemical Bonding: Adaptive Natural Density Partitioning,” Physical Chemistry Chemical Physics 10 (2008): 5207–5217.
- 86D. Y. Zubarev and A. I. Boldyrev, “Revealing Intuitively Assessable Chemical Bonding Patterns in Organic Aromatic Molecules via Adaptive Natural Density Partitioning,” Journal of Organic Chemistry 73 (2008): 9251–9258.
- 87T. Lu and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33 (2012): 580–592.