Computing Accurate & Reliable Rovibrational Spectral Data for Aluminum-Bearing Molecules
C. Zachary Palmer
Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi, USA
Search for more papers by this authorRebecca A. Firth
Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi, USA
Search for more papers by this authorCorresponding Author
Ryan C. Fortenberry
Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi, USA
Correspondence:
Ryan C. Fortenberry ([email protected])
Search for more papers by this authorC. Zachary Palmer
Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi, USA
Search for more papers by this authorRebecca A. Firth
Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi, USA
Search for more papers by this authorCorresponding Author
Ryan C. Fortenberry
Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi, USA
Correspondence:
Ryan C. Fortenberry ([email protected])
Search for more papers by this authorABSTRACT
The difficulty of quantum chemically computing vibrational, rotational, and rovibrational reference data via quartic force fields (QFFs) for molecules containing aluminum appears to be alleviated herein using a hybrid approach based upon CCSD(T)-F12b/cc-pCVTZ further corrected for conventional CCSD(T) scalar relativity within the harmonic terms and simple CCSD(T)-F12b/cc-pVTZ for the cubic and quartic terms: the F12-TcCR+TZ QFF. Aluminum containing molecules are theorized to participate in significant chemical processes in both the Earth's upper atmosphere as well as within circumstellar and interstellar media. However, experimental data for the identification of these molecules are limited, showcasing the potential for quantum chemistry to contribute significant amounts of spectral reference data. Unfortunately, current methods for the computation of rovibrational spectral data have been shown previously to exhibit large errors for aluminum-containing molecules. In this work, ten different methods are benchmarked to determine a method to produce experimentally-accurate rovibrational data for theorized aluminum species. Of the benchmarked methods, the explicitly correlated, hybrid F12-TcCR+TZ QFF consistently produces the most accurate results compared to both gas-phase and Ar-matrix experimental data. This method combines the accuracy of the composite F12-TcCR energies along with the numerical stability of non-composite anharmonic terms where the non-rigid nature of aluminum bonding can be sufficiently treated.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that supports the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
jcc27524-sup-0001-supinfo.pdfPDF document, 202.9 KB |
Supplementary Material. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. M. C. Plane, “The Chemistry of Meteoric Metals in the Earth's Upper Atmosphere,” International Reviews in Physical Chemistry 10 (1991): 55.
- 2J. M. C. Plane, W. Feng, and E. C. M. Dawkins, “The Mesosphere and Metals: Chemistry and Changes,” Chemical Reviews 115 (2015): 4497.
- 3J. M. C. Plane, S. M. Daly, W. Feng, M. Gerding, and J. C. G. Martín, “Meteor-Ablated Aluminum in the Mesosphere-Lower Thermosphere,” Journal of Geophysical Research: Space Physics 126 (2021): e2020JA028792.
- 4H.-P. Gail and E. Sedlmayr, “Inorganic Dust Formation in Astrophysical Environments,” Faraday Discussions 109 (1998): 303.
- 5H.-P. Gail and E. Sedlmayr, “Mineral Formation in Stellar Winds I. Condensation Sequence of Silicate and Iron Grains in Stationary Oxygen Rich Outflows,” Astronomy and Astrophysics 347 (1999): 594.
- 6D. Gobrecht, I. Cherchneff, A. Sarangi, J. M. C. Plane, and S. T. Bromley, “Dust Formation in the Oxygen-Rich AGB Star IK Tauri,” Astronomy and Astrophysics 585 (2016): A6.
- 7D. Gobrecht, J. M. C. Plane, S. T. Bromley, L. Decin, S. Cristallo, and S. Sekaran, “Bottom-Up Dust Nucleation Theory in Oxygen-Rich Evolved Stars. I. Aluminum Oxide Clusters,” Astronomy and Astrophysics 5658 (2022): A167.
10.1051/0004-6361/202141976 Google Scholar
- 8D. Krankowsky, F. Arnold, H. Wieder, and J. Kissel, “The Elemental and Isotopic Abundance of Metallic Ions in the Lower E-Region as Measured by a Cryogenically Pumped Quadrupole Mass Spectrometer,” International Journal of Mass Spectrometry and Ion Physics 8 (1972): 379.
- 9T. P. Mangan, J. M. Harman-Thomas, R. E. Lade, K. M. Douglas, and J. M. C. Plane, “Kinetic Studies of the Reactions of AlO and OAlO Relevant to Planetary Mesospheres,” ACS Earth and Space Chemistry 2020 (2007): 4.
- 10J. Cernicharo and M. Guélin, “Metals in IRC +10216: Detection of NaCl, AlCl, and KCl, and Tentative Detection of AlF,” Astronomy and Astrophysics 183 (1987): L10.
- 11L. M. Ziurys, A. J. Apponi, J. M. Hollis, and L. E. Snyder, “Detection of Interstellar N2O: A New Molecule Containing an N–O Bond,” Astrophysical Journal Letters 436 (1994): 181.
10.1086/187662 Google Scholar
- 12M. Saberi, T. Khouri, L. Velilla-Prieto, J. P. Fonfría, W. H. T. Vlemmings, and S. Wedemeyer, “First Detection of AlF Line Emission Towards M-Type AGB Stars,” Astronomy and Astrophysics 663 (2022): A54.
- 13L. M. Ziurys, C. Savage, J. L. Highberger, A. J. Apponi, M. Guélin, and J. Cernicharo, “More Metal Cyanide Species: Detection of AlNC (X1 Σ+) Toward IRC +10216,” Astrophysical Journal 564 (2002): L45.
- 14E. D. Tenenbaum and L. M. Ziurys, “Millimeter Detection of AlO (X2 Σ+): Metal Oxide Chemistry in the Envelope of VY Canis Majoris,” Astrophysical Journal 693 (2009): L59.
10.1088/0004-637X/694/1/L59 Google Scholar
- 15E. D. Tenenbaum and L. M. Ziurys, “Exotic Metal Molecules in Oxygen-Rich Envelopes: Detection of AlOH (X1 Σ+) in VY Canis Majoris,” Astrophysical Journal 712 (2010): L93–L97.
- 16I. D. Hutcheon, G. R. Huss, A. J. Fahey, and G. J. Wasserburg, “Extreme 26Mg and 17O Enrichments in an Orgueil Corundum: Identification of a Presolar Oxdie Grain,” Astrophysical Journal 425 (1994): L97.
- 17G. R. Huss, A. J. Fahey, R. Gallino, and G. J. Wasserburg, “Oxygen Isotopes in Circumstellar Al2O3 Grains From Meteorites and Stellar Nucleosynthesis,” Astrophysical Journal 430 (1994): L81.
- 18L. R. Nittler, C. M. O. Alexander, R. M. Walker, and E. K. Zinner, “Interstellar Oxide Grains From the Tieschitz Ordinary Chondrite,” Nature 370 (1994): 443.
- 19T. Trabelsi, V. J. Esposito, and J. S. Francisco, “Spectroscopy and Photochemistry of Aluminum-Bearing Species in the Universe,” Accounts of Chemical Research 56 (2023): 3045.
- 20R. C. Fortenberry and T. J. Lee, “Computational Vibrational Spectroscopy for the Detection of Molecules in Space,” Annual Reports in Computational Chemistry 15 (2019): 173.
10.1016/bs.arcc.2019.08.006 Google Scholar
- 21J. K. G. Watson, “ Aspects of Quartic and Sextic Centrifugal Effects on Rotational Energy Levels,” in Vibrational Spectra and Structure, ed. J. R. During (Amsterdam: Elsevier, 1977), 1–89.
- 22D. Papousek and M. R. Aliev, Molecular Vibration-Rotation Spectra (Amsterdam: Elsevier, 1982).
- 23P. R. Franke, J. F. Stanton, and G. E. Douberly, “How to VPT2: Accurate and Intuitive Simulations of CH Stretching Infrared Spectra Using VPT2+K With Large Effective Hamiltonian Resonance Treatments,” Journal of Physical Chemistry. A 125 (2021): 1301.
- 24X. Huang and T. J. Lee, “A Procedure for Computing Accurate Ab Initio Quartic Force Fields: Application to HO2+ and H2O,” Journal of Chemical Physics 129 (2008): 44312.
- 25X. Huang and T. J. Lee, “Accurate Ab Initio Quartic Force Fields for NH2− and CCH− and Rovibrational Spectroscopic Constants for Their Isotopologs,” Journal of Chemical Physics 131 (2009): 104301.
- 26X. Huang, P. R. Taylor, and T. J. Lee, “Highly Accurate Quartic Force Field, Vibrational Frequencies, and Spectroscopic Constants for Cyclic and Linear C3H3+,” Journal of Physical Chemistry. A 115 (2011): 5005.
- 27D. Zhao, K. D. Doney, and H. Linnartz, “Laboratory Gas-Phase Detection of the Cyclopropenyl Cation (c-C3H3+),” Astrophysical Journal Letters 791 (2014): L28.
- 28X. Huang, R. C. Fortenberry, and T. J. Lee, “Protonated Nitrous Oxide, NNOH+: Fundamental Vibrational Frequencies and Spectroscopic Constants From Quartic Force Fields,” Journal of Chemical Physics 139 (2013): 84313.
- 29R. C. Fortenberry, X. Huang, T. D. Crawford, and T. J. Lee, “Quartic Force Field Rovibrational Analysis of Protonated Acetylene, C2H3+, and Its Isotopologues,” Journal of Physical Chemistry. A 118 (2014): 7034.
- 30R. C. Fortenberry, T. J. Lee, and H. S. P. Müller, “Excited Vibrational Level Rotational Constants for SiC2: A Sensitive Molecular Diagnostic for Astrophysical Conditions,” Molecular Astrophysics 1 (2015): 13.
- 31M. J. R. Kitchens and R. C. Fortenberry, “The Rovibrational Nature of Closed-Shell Third-Row Triatomics: HOX and HXO, X = Si+, P, S+, and cl,” Chemical Physics 472 (2016): 119.
- 32R. C. Fortenberry, “Quantum Astrochemical Spectroscopy,” International Journal of Quantum Chemistry 117 (2017): 81.
- 33R. C. Fortenberry, C. M. Novak, J. P. Layfield, E. Matito, and T. J. Lee, “Overcoming the Failure of Correlation for out-Of-Plane Motions in a Simple Aromatic: Rovibrational Quantum Chemical Analysis of c-C3H2,” Journal of Chemical Theory and Computation 14 (2018): 2155.
- 34D. Agbaglo and R. C. Fortenberry, “The Performance of CCSD(T)-F12/Aug-Cc-pVTZ for the Computation of Anharmonic Fundamental Vibrational Frequencies,” International Journal of Quantum Chemistry 119 (2019): e25899.
10.1002/qua.25899 Google Scholar
- 35M. B. Gardner, B. R. Westbrook, R. C. Fortenberry, and T. J. Lee, “Highly-Accurate Quartic Force Fields for the Prediction of Anharmonic Rotational Constants and Fundamental Vibrational Frequencies,” Spectrochimica Acta A 248 (2021): 119184.
- 36A. G. Watrous, B. R. Westbrook, and R. C. Fortenberry, “F12-TZ-cCR: A Methodology for Faster and Still Highly-Accurate Quartic Force Fields,” Journal of Physical Chemistry. A 125 (2021): 10532.
- 37A. G. Watrous, B. R. Westbrook, and R. C. Fortenberry, “The Performance of Hybrid and F12*/F12c Explicitly Correlated Coupled Cluster Methods for Use in Anharmonic Vibrational Frequency Computations,” International Journal of Quantum Chemistry 123 (2023): e27225.
- 38R. C. Fortenberry, Q. Yu, J. S. Mancini, et al., “Communication: Spectroscopic Consequences of Proton Delocalization in OCHCO+,” Journal of Chemical Physics 143 (2015): 71102.
- 39Q. Yu, J. M. Bowman, R. C. Fortenberry, et al., “The Structure, Anharmonic Vibrational Frequencies, and Intensities of NNHNN+,” Journal of Physical Chemistry. A 119 (2015): 11623.
- 40M. K. Bassett and R. C. Fortenberry, “Symmetry Breaking and Spectral Considerations of the Surprisingly Floppy c-C3H Radical and the Related Dipole-Bound Excited State of c-C3H,” Journal of Chemical Physics 146 (2017): 224303.
- 41R. C. Fortenberry, R. Thackston, J. S. Francisco, and T. J. Lee, “Toward the Laboratory Identification of the Not-So-Simple NS2 Neutral and Anion Isomers,” Journal of Chemical Physics 147 (2017): 74303.
- 42C. Z. Palmer, R. C. Fortenberry, and J. S. Fransisco, “Spectral Signatures of Hydrogen Thioperoxide (HOSH) and Hydrogen Persulfide (HSSH): Possible Molecular Sulfur Sinks in the Dense ISM,” Molecules 27, no. 10 (2022): 3200.
- 43E. S. Doerksen and R. C. Fortenberry, “A Coincidence Between Bond Strength Atomic Abundance, and the Composition of Rocky Materials,” ACS Earth and Space Chemistry 4 (2020): 812.
- 44R. C. Fortenberry, T. Trabelsi, and J. S. Francisco, “Anharmonic Frequencies and Spectroscopic Constants of OAlOH and AlOH: Strong Bonding but Unhindered Motion,” Journal of Physical Chemistry. A 124 (2020): 8834.
- 45V. J. Esposito, C. Z. Palmer, R. C. Fortenberry, and J. S. Francisco, “Spectroscopy and Photochemistry of OAlNO and Implications for New Metal Chemistry in the Atmosphere,” Journal of Physical Chemistry. A 127 (2023): 7618.
- 46K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, “A Fifth-Order Perturbation Comparison of Electron Correlation Theories,” Chemical Physics Letters 157 (1989): 479.
- 47I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory (Cambridge: Cambridge University Press, 2009).
10.1017/CBO9780511596834 Google Scholar
- 48T. D. Crawford and H. F. Schaefer, III, “ An Introduction to Coupled Cluster Theory for Computational Chemists,” in Reviews in Computational Chemistry, vol. 14, eds. K. B. Lipkowitz and D. B. Boyd (New York: Wiley, 2000), 33–136.
- 49W. Györffy and H.-J. Werner, “Analytical Energy Gradients for Explicitly Correlated Wave Functions. II. Explicitly Correlated Coupled Cluster Singles and Doubles With Perturbative Triples Corrections: CCSD(T)-F12,” Journal of Chemical Physics 148 (2018): 114104.
- 50R. C. Fortenberry, X. Huang, J. S. Francisco, T. D. Crawford, and T. J. Lee, “The Trans-HOCO Radical: Fundamental Vibrational Frequencies, Quartic Force Fields, and Spectroscopic Constants,” Journal of Chemical Physics 135 (2011): 134301.
- 51T. B. Adler, G. Knizia, and H.-J. Werner, “A Simple and Efficient CCSD(T)-F12 Approximation,” Journal of Chemical Physics 127 (2007): 221106.
- 52G. Knizia, T. B. Adler, and H.-J. Werner, “Simplified CCSD(T)-F12 Methods: Theory and Benchmarks,” Journal of Chemical Physics 130 (2009): 054104.
- 53D. Agbaglo and R. C. Fortenberry, “The Performance of Explicitly Correlated Wavefunctions [CCSD(T)-F12b] in the Computation of Anharmonic Vibrational Frequencies,” Chemical Physics Letters 734 (2019): 136720.
- 54C. Z. Palmer and R. C. Fortenberry, “Rovibrational Considerations for the Monomers and Dimers of Magnesium Hydride (MgH2) and Magnesium Fluoride (MgF2),” Journal of Physical Chemistry. A 122 (2018): 7079.
- 55N. Inostroza-Pino, C. Z. Palmer, T. J. Lee, and R. C. Fortenberry, “Theoretical Rovibrational Characterization of the cis/Trans-HCSH and H2SC Isomers of the Known Interstellar Molecule Thioformaldehyde,” Journal of Molecular Spectroscopy 369 (2020): 111273.
- 56B. R. Westbrook and R. C. Fortenberry, “Anharmonic Frequencies of (MO)2 & Related Hydrides for M = mg, Al, Si, P, S, ca, & Ti and Heuristics for Predicting Anharmonic Corrections of Inorganic Oxides,” Journal of Physical Chemistry. A 124 (2020): 3191.
- 57R. A. Kendall, T. H. Dunning, and R. J. Harrison, “Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions,” Journal of Chemical Physics 96 (1992): 6796.
- 58D. E. Woon and T. H. Dunning, “Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum Through Argon,” Journal of Chemical Physics 98 (1993): 1358.
- 59D. A. Woon and T. H. Dunning, “Gaussian Basis Sets for Use in Correlated Molecular Calculations. V. Core?Valence Basis Sets for Boron Through Neon,” Journal of Chemical Physics 103 (1995): 4572.
- 60K. A. Peterson and T. H. Dunning, “Accurate Correlation Consistent Basis Sets for Molecular Core-Valence Correlation Effects: The Second Row Atoms Al-Ar, and the First Row Atoms B-Ne Revisited,” Journal of Chemical Physics 117 (2002): 10548.
- 61K. A. Peterson, T. B. Adler, and H.-J. Werner, “Systematically Convergent Basis Sets for Explicitly Correlated Wavefunctions: The Atoms H, he, B-Ne, and Al-Ar,” Journal of Chemical Physics 128 (2008): 084102.
- 62K. E. Yousaf and K. A. Peterson, “Optimized Auxiliary Basis Sets for Explicitly Correlated Methods,” Journal of Chemical Physics 129 (2008): 184108.
- 63G. Jansen and B. A. Hess, “Revision of the Douglas-Kroll Hamiltonian,” Physical Review A 39 (1989): 6016.
- 64W. A. de Jong, R. J. Harrison, and D. A. Dixon, “Parallel Douglas-Kroll Energy and Gradients in NWChem: Estimating Scalar Relativistic Effects Using Douglas-Kroll Contracted Basis Sets,” Journal of Chemical Physics 114 (2001): 48.
- 65J. G. Hill, S. Mazumder, and K. A. Peterson, “Correlation Consistent Basis Sets for Molecular Core-Valence Effects With Explicitly Correlated Wave Functions: The Atoms B-Ne and Al-Ar,” Journal of Chemical Physics 132 (2010): 054108.
- 66M. Douglas and N. Kroll, “Quantum Electrodynamical Corrections to the Fine Structure of Helium,” Annals of Physics 82 (1974): 89.
- 67B. R. Westbrook and R. C. Fortenberry, “Pbqff: Push-Button Quartic Force Fields,” Journal of Chemical Theory and Computation 19 (2023): 2606.
- 68H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, “Molpro: A General-Purpose Quantum Chemistry Program Package,” WIREs Computational Molecular Science 2 (2012): 242.
- 69H.-J. Werner, P. J. Knowles, F. R. Manby, et al., “The Molpro Quantum Chemistry Package,” Journal of Chemical Physics 152 (2020): 144107.
- 70H.-J. Werner, P. J. Knowles, P. Celani, et al., “MOLPRO, 2023.2, a package of ab initio programs,” 2023, http://www.molpro.net.
- 71I. M. Mills, “ Vibration-Rotation Structure in Asymmetric- and Symmetric-Top Molecules,” in Molecular Spectroscopy - Modern Research, eds. K. N. Rao and C. W. Mathews (New York: Academic Press, 1972), 115–140.
10.1016/B978-0-12-580640-4.50013-3 Google Scholar
- 72J. M. L. Martin, T. J. Lee, P. R. Taylor, and J.-P. François, “The Anharmonic Force Field of Ethylene, C2H4, by Means of Accurate Ab Initio Calculations,” Journal of Chemical Physics 103 (1995): 2589.
- 73J. M. L. Martin and P. R. Taylor, “Accurate Ab Initio Quartic Force Field for Trans-HNNH and Treatment of Resonance Polyads,” Spectrochimica Acta A 53 (1997): 1039.
- 74J. F. Gaw, A. Willets, W. H. Green, and N. C. Handy, “ SPECTRO: A Program for the Derivation of Spectroscopic Constants From Provided Quartic Force Fields and Cubic Dipole Fields,” in Advances in Molecular Vibrations and Collision Dynamics, eds. J. M. Bowman and M. A. Ratner (Greenwich, Connecticut: JAI Press, Inc., 1991), 170–185.
- 75W. T. Yang, R. G. Parr, and C. T. Lee, “Various Functionals for the Kinetic Energy Density of an Atom or Molecule,” Physical Review A 34 (1986): 4586.
- 76C. Lee, W. T. Yang, and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron Density,” Physical Review B 37 (1988): 785.
- 77A. G. Watrous, B. R. Westbrook, and R. C. Fortenberry, “On the Detectability of Interstellar Diaminomethane ((NH2)2CH2),” Monthly Notices of the Royal Astronomical Society 527, no. 4 (2023): 11090–11094.
10.1093/mnras/stad3938 Google Scholar
- 78R. C. F. N. R. Garrett and M. C. Davis, “DFT+F12 QFFs for Cost-Effective Rovibrational Spectral Data Predictions of Ground and Excited Electronic States,” Journal of Chemical Theory and Computation 20 (2024): 1324.
- 79V. A. Loginov, “The Production of Electronic Band Spectra by the Exploding Wire Method,” Optics and Spectroscopy 16 (1964): 220.
- 80X. Song, M. R. Fagiani, S. Gewinner, et al., “Gas Phase Structures and Charge Localization in Small Aluminum Oxide Anions: Infrared Photodissociation Spectroscopy and Electronic Structure Calculations,” Journal of Chemical Physics 144 (2016): 244305.
- 81L. B. Knight and J. W. Weltner, “ESR and Optical Spectroscopy of the AlO Molecule at 4∘K; Observation of an Al Complex and Its Interaction With Krypton,” Journal of Chemical Physics 55 (1971): 5066.
- 82X. Huang, R. C. Fortenberry, and T. J. Lee, “Spectroscopic Constants and Vibrational Frequencies for l-C3H+ and Isotopologues From Highly-Accurate Quartic Force Fields: The Detection of l-C3H+ in the Horsehead NEBULA PDR Questioned,” Astrophysical Journal Letters 768 (2013): 25.
- 83P. Botschwina, C. Stein, P. Sebald, B. Schröder, and R. Oswald, “Strong Theoretical Support for the Assignment of B11244 to l-C3H+,” Astrophysical Journal 787 (2014): 72.
- 84G. C. Pimentel and S. W. Charles, “Infrared Spectral Perturbations in Matrix Experiments,” Pure and Applied Chemistry 7 (1963): 111.
- 85G. V. Chertihin and L. Andrews, “Reactions of Pulsed-Laser Ablated Al Atoms With H2. Infrared Spectra of AlH, AlH2, AlH3, and Al2 H2,” Journal of Physical Chemistry 97 (1993): 10295.
- 86C. Z. Palmer and R. C. Fortenberry, “Fluoro Hydrogen Peroxide: A Plausible Molecular Form of Naturally-Occuring Fluorine,” ACS Earth and Space Chemistry 6 (2022): 2032.
- 87D. S. Hollman and H. F. Schaefer, “In Search of the Next Holy Grail of Polyoxide Chemistry: Explicitly Correlated Ab Initio Full Quartic Force Fields for HOOH, HOOOH, HOOOOH, and Their Isotopologues,” Journal of Chemical Physics 136 (2012): 084302.
- 88T. Trabelsi, M. C. Davis, R. C. Fortenberry, and J. S. Francisco, “Spectroscopic Investigation of [Al,N,C,O] Refractory Molecules,” Journal of Chemical Physics 151 (2019): 244303.
- 89H.-J. Himmel, A. J. Downs, and T. M. Greene, “Amidoalane, Amidogallane and Amidoindane, H2MNH2 (M = Al, Ga or in): A Matrix Study of Three Prototypal Molecules With the Potential for M-N Multiple Bonding,” Chemical Communications, no. 10 (2000): 871–872.
- 90O. A. Harwick and R. C. Fortenberry, “C-AlO2, c-HAlO2, and c-(HN)OAlH Spectroscopic Constants and Anharmonic Frequencies,” Journal of Molecular Spectroscopy 391 (2023): 111721.
- 91A. G. Watrous, M. C. Davis, and R. C. Fortenberry, “Pathways to Detection of Strongly-Bound Inorganic Species: The Vibrational and Rotational Spectral Data of AlH2OH, HMgOH, AlH2NH2, and HMgNH2,” Frontiers in Astronomy and Space Sciences 8 (2021): 1.