Stable, aromatic, and electrophilic azepinium ions: Design using quantum chemical methods
Nabajyoti Patra
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
Search for more papers by this authorAstha Gupta
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
Search for more papers by this authorCorresponding Author
Prasad V. Bharatam
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
Correspondence
Prasad V. Bharatam, Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
Email: [email protected]
Search for more papers by this authorNabajyoti Patra
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
Search for more papers by this authorAstha Gupta
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
Search for more papers by this authorCorresponding Author
Prasad V. Bharatam
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
Correspondence
Prasad V. Bharatam, Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
Email: [email protected]
Search for more papers by this authorAbstract
Cyclic nitrenium ions containing five-membered and six-membered rings are available, however, the seven-membered cyclic nitrenium ions (azepinium ions) are rare. The chemistry of these species is related to their stability originating from the aromaticity due to 6π electrons. Very few theoretical and experimental studies have been conducted on the azepinium ions. Related clozapine and olanzapine cations (diazepinium ions) were observed during drug metabolism studies. In this work, quantum chemical analysis has been carried out to estimate the stability, aromaticity, and electrophilicity of several derivatives of azepinium ions. A few of the designed azepinium ions carry ΔES-T values in the range of 50 kcal/mol favoring singlet state; π donating groups at the 2nd position increase the singlet-triplet energy differences. Most of the substituents reduce the NICS(1) values compared to the parent system. Ring fusion with heterocyclic five-membered rings generally increases the aromaticity and the stability of the azepinium ion ring systems. The electrophilicity parameters estimated in terms of HIA, FIA, and ω values indicate that it is possible to fine-tune the chemical properties of azepinium ions with appropriate modulation.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
Filename | Description |
---|---|
jcc27520-sup-0001-Supinfo.docxWord 2007 document , 9.1 MB | Data S1: The absolute free energies for all the optimized structures are provided. 3D-optimized geometries and coordinates of compounds discussed in the text are included. Additional Supporting Information may be found in the online version of this article. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1(a) S. S. Rana, J. Choudhury, J. Am. Chem. Soc. 2024, 146, 3603. (b) I. Avigdori, K. Singh, A. Pogoreltsev, A. Kaushansky, N. Fridman, M. Gandelman, Z. Anorg, Allg Chem 2023, 649, 649. (c) K. Singh, I. Avigdori, A. Kaushansky, N. Fridman, D. Toledano, M. Gandelman, ACS Catal. 2022, 12, 6831. (d) Y. Tulchinsky, M. A. Iron, M. Botoshansky, M. Gandelman, Nat. Chem. 2011, 3, 525.
- 2(a) L. Du, J. Wang, Y. Qiu, R. Liang, P. Lu, X. Chen, D. L. Phillips, A. H. Winter, Nat. Commun. 2022, 13, 3458. (b) C. Jing, J. J. Farndon, F. J. Bower, Chem. Rec. 2021, 21, 2909. (c) L. Du, Z. Yan, Z. Zhu, S.-C. Cheng, Y. Zhang, X. Li, W. Tang, D. L. Philips, J. Org. Chem. 2020, 85, 8792. (d) K. Fujimoto, D. Shimzu, A. Osuka, Chem. Eur. J. 2019, 25, 521. (e) D. E. Falvey, ACS Omega 2018, 3, 10418. (f) Y. Qiu, J. L. Fischer, A. S. Dutton, A. H. Winter, J. Org. Chem. 2017, 82, 13550. (g) A. H. Winter, D. E. Falvey, C. J. Cramer, J. Am. Chem. Soc. 2004, 126, 9661.
- 3(a) T. Danelzik, S. Joseph, C. M. Mück-Lichtenfeld, C. G. Daniliuc, O. García Mancheño, Org. Lett. 2022, 24, 6105. (b) D. Ranolia, I. Avigdori, K. Singh, A. Koronatov, N. Fridman, M. Gandelman, Org. Lett. 2022, 24, 3915. (c) D. Zhu, Z.–. W. Qu, J. Zhou, D. W. Stephan, Chem. Eur. J. 2021, 27, 2861. (d) M. Mehta, M. J. Goicoechea, Angew. Chem. Int. ed. 2020, 59, 2715. (e) I. Avigdori, A. Pogoreltsev, A. Kaushanski, N. Fridman, M. Gandelman, Angew. Chem., Int. ed. 2020, 59, 23476. (f) J. Zhou, L. L. Liu, L. L. Cao, D. W. Stephan, Angew. Chem., Int. ed. 2018, 57, 3322. (g) A. Pogoreltsev, Y. Tulchinsky, N. Fridman, M. Gandelman, J. Am. Chem. Soc. 2017, 139, 4062.
- 4(a) F. Z. Weiss, J. Little, S. Hammond, Expert Rev. Anti-Infect. Ther. 2023, 21, 535. (b) A. C. das Almeida, S. R. Meinal, L. Y. Leal, P. T. Silva, N. Glanzmann, C. V. D. Mendonça, L. Perin, F. E. Cunha-Júnior, F. A. E. Coelho, N. C. R. Melo, D. A. Silva, S. E. Coimbra, Parasitol. Res. 2022, 121, 1389. (c) A. J. Wilson, J. Z. Lin, I. Rodriguez, T. Ta, L. Martz, D. Fico, S. S. Johnson, D. J. Gordon, L. K. Shelton, B. L. King, J. Heterocyclic Chem. 2022, 59, 577. (d) R. Maity, B. Sarkar, J. Am. Chem. Soc. Au. 2022, 2, 22. (e) J. Godard, D. Gibbons, S. Leroy-Lhez, M. R. Williams, N. Villandier, T.–. S. Ouk, F. Brégier, V. Sol, Antibiotics 2021, 10, 626.
- 5(a) G. Dubey, N. Mahawar, T. Singh, N. Saha, S. C. Sahoo, P. V. Bharatam, Phys. Chem. Chem. Phys. 2022, 24, 629. (b) N. Patel, M. Afreen, T. Singh, S. Bhagat, A. Sakhare, P. V. Bharatam, J. Comput. Chem. 2020, 41, 2624. (c) T. Singh, P. V. Bharatam, J. Comput. Chem. 2019, 40, 2207. (d) N. Patel, B. Falke, P. V. Bharatam, Theor. Chem. Acc. 2018, 137, 34. (e) N. Patel, R. Sood, P. V. Bharatam, Chem. Rev. 2018, 118, 8770. (f) N. Patel, M. Afreen, R. Sood, S. Khullar, A. K. Chakraborti, S. K. Mandal, P. V. Bharatam, Chem. Eur. J. 2018, 24, 6418. (g) P. V. Bharatam, M. Afreen, N. Patel, P. Jain, S. Bhatia, A. K. Chakraborti, S. Khullar, V. Gupta, S. K. Mandal, Chem. Eur. J. 2016, 22, 1088. (h) S. Bhatia, Y. J. Malkhade, P. V. Bharatam, J. Comput. Chem. 2013, 34, 1577. (i) D. S. Patel, P. V. Bharatam, J. Phys. Chem. A 2011, 115, 7645. (j) D. S. Patel, P. V. Bharatam, J. Org. Chem. 2011, 76, 2558. (k) D. S. Patel, P. V. Bharatam, Chem. Commun. 2009, 9, 1064.
- 6J. M. Aizpurua, R. M. Fratila, Z. Monasterio, N. Pérez-Esnaola, E. Andreieff, A. Irastorza, M. Sagartzazu-Aizpurua, New J. Chem. 2014, 38, 474.
- 7(a) D. Kase, T. Takada, N. Tsuji, T. Mitsuhashi, R. Haraguchi, Asian J. Org. Chem. 2023, 12, e202300108. (b) I. Avigdori, K. Singh, N. Fridman, M. Gandelman, Chem. Sci. 2023, 14, 12034. (c) J.–S. Yang, K. Lu, C.-.X. Li, Z.-.H. Zhao, X.-.M. Zhang, F.-.M. Zhang, Y.-.Q. Tu, Angew. Chem. Int. ed. 2022, 61, e202114129. (d) K. Ohmatsu, T. Ooi, 1,2,3-Triazoles and 1,2,3-Triazolium Ions as Catalysts, in Anion-Binding Catalysis, WileyVCH, Weinheim, 2022, ch. 7. pp. 221. (e) Z. Yacob, J. Liebscher, Chemistry of 1,2,3-Triazolium Salts. InChemistry of 1,2,3-Triazoles; Dehaen, W., Bakulev, V. A., Eds.; Springer International Publishing, Berlin Heidelberg 2015; Vol. 40, pp 167.
- 8(a) J. Song, J. Lv, J. Jin, Z. Jin, T. Li, J. Wu, Int. J. Mol. Sci. 2023, 24, 10694. (b) J. T. Fletcher, J. M. Sobczyk, S. C. Gwazdacz, A. J. Blanck, Bioorg. Med. Chem. Lett. 2018, 28, 3320.
- 9(a) A. H. Winter, H. H. Gibson, D. E. Falvey, J. Org. Chem. 2007, 72, 8186. (b) W. C. Herndon, N. S. Mills, J. Org. Chem. 2005, 70, 8492.
- 10(a) R. Sparrapan, M. N. Eberlin, R. Augusti, Rapid Commun. Mass Spectrom. 2005, 19, 1775. (b) D. Bogdal, Heterocycl. Chem 2000, 53, 2679.
- 11(a) A. V. Robertson, C. Djerassi, J. Am. Chem. Soc. 1968, 90, 6992. (b) M. Marx, C. Djerassi, J. Am. Chem. Soc. 1968, 90, 678.
- 12L. A. Paquatte, D. E. Kuha, J. H. Barret, R. J. Haluska, J. Org. Chem. 1969, 34, 2866.
10.1021/jo01262a015 Google Scholar
- 13D. A. Smith, J. Bitar, J. Org. Chem. 1993, 58, 6.
- 14M. Ikeda, K. Ohno, M. Takahashi, T. Uno, Y. Tamura, M. Kido, J. Chem. Soc., Perkin Trans. 1982, 1, 741.
- 15(a) K. B. Mchugh, W. M. Howell, J. J. Doran, M. C. Cann, J. Heterocyclic Chem. 1839, 1990, 27. (b) M. C. Cann, D. Lezinksy, J. Heterocyclic Chem. 1988, 25, 863. (c) M. C. Cann, J. Org. Chem. 1988, 53, 1112.
- 16(a) Y. Kubota, K. Satake, H. Okomato, M. Kimura, Org. Lett. 2005, 7, 5215. (b) K. Satake, Y. Kubota, C. E. J. Cordonier, H. Okamoto, M. Kimura, Angew. Chem., Int. ed. 2004, 43, 736.
- 17(a) M. di Stefano, M. Rosi, A. Sgamelloti, D. Ascenzi, D. Bassi, P. Franceschi, P. Tosi, J. Chem. Phys. 1978, 2003, 119.
(b) S. Bátori, R. Gompper, J. Meieir, H.-.U. Wagner, Tetrahedron 1988, 44, 3309.
(c) T. B. Brown, P. R. Lowe, C. H. Schwalbe, M. F. G. Steven, J. Chem. Soc., Perkin Trans. 1983, 1, 2485.
(d) R. A. Abramovich, E. P. Kyaba, E. F. V. Scriven, Org. Chem. 1971, 36, 3796.
10.1021/jo00823a030 Google Scholar(e) K. L. Reinhert, A. C. Buchholz Jr., G. E. van Lear, J. Am. Chem. Soc. 1968, 90, 1073.10.1021/ja01006a050 Google Scholar
- 18A. Sikora, J. Adamus, A. Marcinek, Chem. Res. Toxicol. 2007, 20, 1093.
- 19S. C. Sahoo, G. Bhargavi, K. Satyanarayana, K. N. Sahoo, K. A. Moharana, Int. J. Pharm. 2015, 6, 37.
- 20J. C. Bernhammer, G. Frison, H. V. Huyunh, Chem. Eur. J. 2013, 19, 12892.
- 21M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta Jr., F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc, Wallingford CT. 2016.
- 22(a) G. I. Csonka, Theochem 2002, 584, 1. (b) J. E. del Bene, W. B. Person, K. Szczepaniak, J. Phys. Chem. 1995, 99, 10705.
- 23(a) F. Weinhold, C. R. Landis, E. D. Glendenning, Int. Rev. Phys. Chem. 2016, 35, 399. (b) B. D. Dunnington, J. R. Schmidt, J. Chem. Theory Comput. 2012, 8, 1902. (c) E. Kavitha, N. Sundaraganesan, S. Sebastian, M. Kurt, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 77, 612.
- 24(a) H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Cormnbouef, R. Puchta, P. v. R. Schleyer, Org. Lett. 2006, 8, 863.
(b) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842.
(c) C. Corminbouef, T. Heine, G. Seifert, P. v. R. Schleyer, J. Weber, Phys. Chem. Chem. Phys. 2004, 6, 273.
10.1039/B313383B Google Scholar(d) T. Heine, P. v. R. Schleyer, C. Corminbouef, G. Seifert, R. Reviakiner, J. Weber, J. Phys. Chem. A 2003, 107, 6470.
- 25K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251.
- 26(a) D. Geuenich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758. (b) R. Herges, D. Geuenich, J. Phys. Chem. A 2001, 105, 3214.
- 27T. A. Keith, R. F. W. Bader, Chem. Phys. Lett. 1993, 210, 223.
- 28C. Cason, T. Froehlich, C. Lipka, POV-Ray 3.7.0.msvc10.win64. Persistence of Vision, Raytracer Pty. Ltd, Fortitude Valley, Australia 2013.
- 29(a) R. R. Aysin, S. S. Bukalov, Russ. Chem. Bull. 2021, 70, 706. (b) D. W. Szczepanik, M. Solà, The Electron Density of Delocalized Bonds (EDDBs) as a Measure of Local and Global Aromaticity, in Aromaticity. Modern Computational Methods and Applications, Elsevier Inc., Amsterdam, 2021, pp. 259. (c) D. W. Szczepanik, M. Andrzejak, J. Dominikowska, B. Pawalek, T. M. Krygowski, H. Szatylowicz, M. Solà, Phys. Chem. Chem. Phys. 2017, 19, 28970.
- 30(a) M. A. Kaczorowska, A. Kaczmarek-Kędziera, B. Ośmiałowski, Sci. Rep. 2021, 11, 87. (b) P. V. Bharatam, P. Iqbal, A. Malde, R. Tiwari, J. Phys. Chem. A. 2004, 108, 10509. (c) D. E. Raczyńska, K. M. Cyrański, M. Gutowski, J. Rak, F. J. Gal, C. P. Maria, M. Darowska, K. Duczmal, J. Phys. Org. Chem. 2003, 16, 91. (d) B. Z. Maksić, B. Kovačević, J. Org. Chem. 2000, 65, 3303.
- 31(a) E. Blokker, C. G. T. Groen, J. M. van der Schuur, A. G. Talma, F. M. Bickelhaupt, Results Chem. 2019, 1, 100007. (b) J. Cheng, K. L. Handoo, V. D. Parker, J. Am. Chem. Soc. 1993, 115, 2655.
- 32(a) P. Erdmann, J. Leitner, J. Schwarz, L. Greb, ChemPhysChem 2020, 21, 987.
(b) J. C. Hartz, D. H. McDaniel, J. Am. Chem. Soc. 1973, 95, 8562.
10.1021/ja00807a011 Google Scholar
- 33(a) C. Esterhuysun, G. Frenking, Chem. Eur. J. 2011, 17, 9944.
(b) V. Jona, G. Frenking, M. T. Reetz, J. Am. Chem. Soc. 1994, 116, 8741.
10.1021/ja00098a037 Google Scholar(c) R. F. Jordan, P. K. Bradley, N. C. Baenziger, R. E. LaPointe, J. Am. Chem. Soc. 1990, 112, 1289.
- 34P. v. R. Schleyer, F. Pühlhofer, Org. Lett. 2002, 4, 2873.
- 35(a) P. K. Chattaraj, D. R. Roy, Chem. Rev. 2007, 107, 2065. (b) R. G. Parr, L. v. Szentpály, J. Am. Chem. Soc. 1999, 121, 1922.
- 36(a) M. Majeed, M. Waqas, Z. Aloui, M. Essid, A. A. M. Ibrahim, A. R. Khera, M. Shaban, ACS Omega 2023, 8, 45384. (b) T. Lu, J. Mol. Model. 2021, 27, 263. (c) T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580. (d) T. Lu, J. Chem. Phys. 2024, 161, 082503.
- 37S. G. Smith, R. Sanchez, M.-.M. Zhou, Chem. Biol. 2014, 21, 573.
- 38L. Greb, Chem. Eur. J. 2018, 24, 17881.